Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Direct Cycloaddition of Activated N-Heteroarenes via Siteand Stereoselective Dearomative Reactions

Jiyoun Lee,[†] Donguk Ko,[†] Hyunju Park and Eun Jeong Yoo*

Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea († These authors contributed equally.)

Email: ejyoo@khu.ac.kr

Table of contents

General Information	2
Experimental Procedures	3
Optimization Studies of Cycloaddition of Quinolinium Zwitterion and Sulfoxonium Salt (Table 1)	
General Procedure for the Site-Selective Cycloaddition of Quinolinium Zwitterions and Sulfur Ylides (Scheme 3 and 4)	
Control Experiment to Confirm the Sequence of Cascade Cycloaddition	
Optimization Studies of the Asymmetric Cyclopropanation of Quinolinium Zwitterion (Table S1)	
Procedure for Enantioselective Cyclopropanation of Quinolinium Zwitterion (Scheme 5)	
Synthetic Applications of Obtained Compounds (Scheme 6)	
Spectroscopic Data	5
X-ray Crystal Data (4a and 7f)	18
Reference	20
Copies of Spectral Data of Compounds Obtained in this Study	21
Copies of HPLC Data of Compound 7	68
	General InformationExperimental ProceduresOptimization Studies of Cycloaddition of Quinolinium Zwitterion and Sulfoxonium Salt (Table 1)General Procedure for the Site-Selective Cycloaddition of Quinolinium Zwitterions and Sulfur Ylides (Scheme 3 and 4)Control Experiment to Confirm the Sequence of Cascade CycloadditionOptimization Studies of the Asymmetric Cyclopropanation of Quinolinium Zwitterion (Table S1)Procedure for Enantioselective Cyclopropanation of Quinolinium Zwitterion (Scheme 5)Synthetic Applications of Obtained Compounds (Scheme 6)Spectroscopic DataX-ray Crystal Data (4a and 7f)ReferenceCopies of Spectral Data of Compounds Obtained in this StudyCopies of HPLC Data of Compound 7

Acknowledgment We acknowledge the Korea Basic Science Institute (KBSI) for the HRMS and X-ray

analysis.

I. General Methods

Unless otherwise stated, all commercial reagents and solvents were used without additional purification. The quinolinium zwitterions (1) were prepared according to the reported procedure.^{S1} Analytical thin layer chromatography (TLC) was performed on Merck pre-coated silica gel 60 F254 plates. Visualization on TLC was achieved by use of UV light (254 nm). Flash column chromatography was undertaken on silica gel (Merck Kiesel gel 60 F254 230-400 mesh). ¹H NMR were recorded on Bruker DPX FT (400 MHz) and JEOL (300 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet. Coupling constants, J, were reported in hertz unit (Hz). ¹³C NMR were recorded on Bruker FT AM 400 (100 MHz) and JEOL (75MHz). There were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of chloroform-d. Infrared spectra were recorded on JASCO FT/IR-4700 and FT/IR-4200 FT-IR spectrometer. Frequencies are given in reciprocal centimeters (cm-1) and only selected absorbance is reported. Analytical normal-phase high-performance liquid chromatography (HPLC) was using an Agilent 1260 Infinity II series instrument equipped with a photodiode array detector (254 nm) and columns (chiral supports, 5 µm particle size, 4.6 x 250 mm) from Daicel Chemical Industries. High resolution mass spectra were obtained from the Korea Basic Science Institute (Daegu) by EI or ESI method.

II. Experimental Procedure

II-1. Optimization Studies of Divergent Cycloaddition of Quinolinium Zwitterion (1a) and Sulfoxonium Salt (2a) (Table 1)

To a test tube with a triangular-shaped stir bar were added quinolinium zwitterion (**1a**, 0.1 mmol), trimethylsulfoxonium iodide (**2a**, 2 equiv), base (2 equiv) and solvent (1 mL) under N₂ atmospheric conditions. The reaction mixture was stirred at room temperature. After 18 h, it was filtered through a pad of silica and then washed with EtOAc (10 mL x 3). The organic solvent was removed under reduced pressure. The NMR yield of desired products (**3a** and **4a**) were determined by integration using an internal standard (CH₂Br₂).

II-2. Procedure for the Cycloaddition of Quinolinium Zwitterions (1) and Sulfur Ylides (2)

A. [2+1] Cycloaddition of Quinolinium Zwitterions (1) and Sulfoxonium Salt (2a) (Scheme 3).

To a test tube with a triangular-shaped stir bar were added quinolinium zwitterion (1, 0.1 mmol), trimethylsulfoxonium iodide (2a, 4 equiv), NaOMe (4 equiv), and DMF (2 mL) under N₂ atmospheric conditions. The reaction mixture was stirred at 40 °C for 3 h. After cooling the reaction mixture at room temperature, it was filtered through a pad of silica and then washed with EtOAc (10 mL x 3). The organic solvent was removed under reduced pressure. The organic residue was purified by chromatography on silica and the desired needback 2(2a, 2b)

silica gel to give the desired product 3 (3a-3h).

B. [2+1] Cycloaddition of Quinolinium Zwitterion (1a) and Benzyldimethylsulfonium Salt (2) (Scheme 3).^{S2}

To a test tube with a triangular-shaped stir bar were added quinolinium zwitterion (**1a**, 0.1 mmol), dimethyl(phenyl)sulfonium trifluoromethanesulfonate (2.5 equiv), NaH (2.5 equiv) and DCE (2.5 mL) under N₂ atmospheric conditions. The reaction mixture was stirred at 40 °C for for 3 h. After cooling the reaction mixture to room temperature, the reaction mixture was quenched by H_2O (5 mL) and extracted with CH_2Cl_2 (3 × 10 mL), the organic layer was combined, dried (Na₂SO₄), filtered and concentrated in vacuo to afford a crude oil. The organic residue was purified by chromatography on silica gel to give the desired product **3**i

C. [2+1] Cycloaddition of Quinolinium Zwitterions (1a) and Estersulfonium (or Ketosulfonium) Ylide (2) (Scheme 3).^{S3}

give the desired product 3 (3j-3m).

D. Cascade [2+1]/[5+1] Cycloaddition for Synthesis of Cyclopropane-fused N-Heterocycles (Scheme 4).

To a test tube with a triangular-shaped stir bar were added quinolinium zwitterion (1, 0.1 mmol), trimethylsulfoxonium iodide (2.5 equiv), NaH (2.5 equiv), and DMF (2.5 mL) under N₂ atmospheric conditions. The reaction mixture was stirred at room temperature. After 18 h, the reaction mixture was filtered through a pad of silica and then washed with EtOAc (10 mL x 3). The organic solvent was removed under reduced pressure. The organic residue was purified by chromatography on silica gel to give the desired product **4**.

II-3. Control Experiment to Confirm the Sequence of Cascade Cycloaddition (Scheme 2)

To decipher the sequence of the cascade cycloaddition, we conducted a control experiment with isolated **5** and excess of ylide **A** under various reaction conditions. However, the expected compound **4a** was not observed at all.

A. Procedure: To a test tube with a triangular-shaped stir bar were added cyclic compound **5** (0.1 mmol), trimethylsulfoxonium iodide (**2a**, 2.5 equiv), NaH (2.5 equiv), and DMF (2.5 mL) under N₂ atmospheric conditions. The reaction mixture was stirred at room temperature for 18 h. However, the reaction mixture was not converted at all. In general, sulfur ylides do not undergo cyclopropanation when they are reacted with non-activated olefins.

B. Product ratio depending on the concentration: To a test tube with a triangular-shaped stir bar were added quinolinium zwitterion (1a, 0.1 mmol), trimethylsulfoxonium iodide (2a, 2.5 equiv), NaH (2.5 equiv), and DMF under N₂ atmospheric conditions. The reaction mixture was stirred at room temperature. After 18 h, the reaction mixture was filtered through a pad of silica and then washed with EtOAc (10 mL x 3). The organic solvent was removed under reduced pressure. The ratio of desired products (3a and 4a) were determined by ¹H NMR.

	Ph 1a	0 ⊕S ∽S 2a	NaH DMF C, 18 h Ph 3a	+ NT Ph 4a	S
	Entry	Solvent (mL)	3a (%)	4a (%)	
-	1	1	-	70	
	2	2	-	80	
	3	2.5	-	84	
	4	3	12	73	
_	5	5	9	63	

^a Conditions: **1a** (0.1 mmol), **2a** (2.5 equiv), base (2.5 equiv) and 25 °C, 18 h.

^b NMR yield using CH₂Br₂ as an internal standard.

II-4. Optimization Studies of the Asymmetric Cycloaddition of Quinolinium Zwitterion (1a) and Chiral Sulfur Ylides (Table S1)

To a test tube with a triangular-shaped stir bar were added quinolinium zwitterion (**1a**, 0.1 mmol), chiral sulfonium salt (**6a**), base and solvent under N_2 atmospheric conditions. The reaction mixture was stirred

at room temperature for 2 h and then it was heated to 40 °C for 16 h. After cooling the reaction mixture to room temperature, the reaction mixture was quenched by H_2O (5 mL) and extracted with CH_2CI_2 (3 × 10 mL), the organic layer was combined, dried (Na_2SO_4), filtered and concentrated in vacuo to afford a crude oil. The organic residue was purified by chromatography on silica gel to give the desired product **7a**.

	Ph 1a	+ S⊕ Ph 6a	⊖ base Solvent 40 °C, 16 h	H N N 7a Ph	
entry	equiv of 6a	base	solvent	yield (%)	ee (%)
1	2.5	КОН	MeCN/H ₂ O (9:1)	50 ^a [1:3.5]	96
2	2.5	КОН	MeCN/tBuOH (15:1)	29 [1.1:1]	95
3	2.5	NaOMe	DMF	30 [1.7:1]	93
4	2.5	NaH	DCE	73 [1.5:1]	86
5	2.5	NaH	DMF	41 [1.3:1]	93
6	2.5	NaH	MeCN	75 [1.3:1]	96
7	3.0	NaH	MeCN	78 [1.4:1]	95
8	3.0	КОН	MeCN	40 [1.2:1]	94
9	3.0	K ₂ CO ₃	MeCN	77 [1.4:1]	77

Table S1. Optimization Studies of Enantioselective Cyclopropanation

^aReaction was stirred at room temperature.

II-5. Procedure for Enantioselective Cyclopropanation of Quinolinium Zwitterion (1) (Scheme 5)

To a test tube with a triangular-shaped stir bar were added quinolinium zwitterion (**1**, 0.1 mmol), chiral sulfonium salt (**6**, 3 equiv), NaH (3.5 equiv), and acetonitrile (2.5 mL) under N₂ atmospheric conditions. The reaction mixture was stirred at room temperature for 2 h and then it was heated to 40 °C for 16 h. After cooling the reaction mixture at room temperature, the reaction mixture was quenched by H₂O (5 mL) and extracted with CH_2Cl_2 (3 × 10 mL), the organic layer was combined, dried (Na₂SO₄), filtered and concentrated in vacuo to afford a crude oil. The organic solvent was removed under reduced pressure. The organic residue was purified by chromatography on silica gel to give the desired product **7**.

II-6. Synthetic Applications of Obtained Compound 4 (Scheme 6)

A. Scale-up Reaction for the Synthesis of Compound 4a.

To a 250 mL round bottom flask with a stir bar were added quinolinium zwitterion (**1a**, 4 mmol), trimethylsulfoxonium iodide (2.5 equiv), NaH (2.5 equiv), and DMF (100 mL) under N₂ atmospheric conditions. The reaction mixture was stirred at room temperature for 18 h, and the reaction was quenched with H₂O. The mixture was extracted with EtOAc (10 mL x 3), the organic phases were combined, dried over MgSO₄. Organic solvents were removed under reduced pressure. The organic residue was purified by chromatography on silica gel to give the desired product **4a** (1.35 g, 79%).

B. Detosylation of Compound 4h (Compound 8).

To a test tube with a triangular-shaped stir bar were added compound **4h** (0.1 mmol), Mg powder (10 equiv), THF (0.1 mL), and MeOH (1 mL) under N_2 atmospheric conditions. The reaction mixture was stirred at room temperature. After 1 h, the reaction mixture was filtered through a pad of silica and then

washed with DCM (10 mL x 3). The organic solvent was removed under reduced pressure and used in the next step without further purification.

C. Arylation of Detosylated Compound (Compound 9).

To a test tube with a stir bar were added detosylated compound **8** (0.08 mmol), iodobenzene (1.2 equiv), $Pd(OAc)_2$ (5 mol%), BINAP (5.5 mol%), NaOtBu (1.4 equiv), and toluene (0.5 mL) under N₂ atmospheric conditions. The reaction mixture was stirred at 110 °C for 1 h. After cooling the reaction mixture at room temperature, it was filtered through a pad of celite and then washed with EtOAc (10 mL x 3). The organic solvent was removed under reduced pressure. The organic residue was purified by chromatography on silica gel to give the desired product **9**.

III. Spectroscopic data

3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3a):

Pale yellow oil (83%); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.42 (m, 6H), 7.09-7.05 (td, *J* = 7.43 Hz, 1.06 Hz, 1H), 7.01-6.98 (m, 2H), 6.92-6.88 (m, 1H), 2.90-2.84 (m, 1H), 2.69-2.64 (m, 1H), 1.68-1.62 (td, *J* = 8.80 Hz, 4.56 Hz, 1H), 0.49-0.45 (q, *J* = 4.80 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 146.9, 133.4, 132.1, 130.9, 130.8, 129.7, 129.3, 128.6, 128.1, 127.4, 126.2, 124.9, 117.7, 18.9, 14.3, 12.0; IR (liquid) v 1709.59, 1494.56, 1386.57, 1362.46, 1220.72 cm⁻¹; HRMS (EI) m/z calcd. for C₁₈H₁₄N₂ [*M*+]: 258.1157,

found: 258.1155.

9a-methyl-3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3b):

Pale yellow oil (75%); ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.41 (m, 6H), 7.08-6.98 (m, 3H), 6.91-6.86 (m, 1H), 2.46-2.43 (dd, *J* = 8.98 Hz, 5.21 Hz, 1H), 1.76 (s, 3H), 1.55-1.52 (m, 1H), 0.61-0.59 (t, *J* = 4.77 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 133.3, 132.2, 131.1, 130.6, 129.1, 128.6, 128.0, 126.0, 124.7, 117.6, 27.3, 21.0, 19.9, 19.7; IR (liquid) v 1738.51, 1494.56, 1467.56, 1365.35, 1216.86 cm⁻¹; HRMS (EI) m/z calcd. For C₁₉H₁₆N₂ [*M*+]: 272.1316, found: 272.1313.

3,9a-diphenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3c):

Pale yellow oil (34%); ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.53 (d, *J* = 7.19 Hz, 2H), 7.48-7.25 (m, 9H), 7.14-6.93 (m, 4H), 2.82-2.77 (m, 1H), 2.25-2.21 (dd, *J* = 9.38 Hz, 4.61 Hz, 1H), 1.00-0.97 (t, *J* = 5.10 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 149.0, 140.1, 133.2, 132.1, 131.1, 131.0, 129.7, 129.3, 129.2, 128.7, 128.7, 128.1, 127.5, 127.4, 126.5, 124.9, 117.9, 29.4, 28.4, 18.5; IR (liquid) v 1635.34, 1267.00, 1244.83, 1234.22, 1209.15, 1183.11, 1128.15, 1101.15 cm⁻¹; HRMS (ESI) m/z calcd. For

C₂₄H₁₈N₂[*M*+] 334.1470, found: 334.1470.

7-methyl-3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3d):

Pale yellow oil (77%); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 5H), 7.27-7.26 (m, 1H), 6.96 (s, 1H), 6.87-6.85 (d, *J* = 8.48 Hz, 1H), 6.71-6.68 (dd, *J* = 8.48 Hz, 1.52 Hz, 1H), 2.87-2.81 (m, 1H), 2.64-2.58 (m, 1H), 2.27 (s, 3H), 1.64-1.59 (td, *J* = 8.79 Hz, 4.54 Hz, 1H), 0.46-0.43 (q, *J* = 4.79 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 134.5, 132.3, 131.1, 130.7, 130.5, 130.1, 129.3, 128.6, 128.0, 127.3, 126.8, 117.5, 20.5, 18.8, 14.3, 12.1; IR (liquid) v 1737.55, 1505.17, 1375.00, 1228.43,

1216.86, 1206.26 cm⁻¹; HRMS (EI) m/z calcd. for C₁₉H₁₆N₂ [*M*+]: 272.1315, found: 272.1313

7-methoxy-3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3e):

Pale yellow oil (86%); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 5H), 7.00-6.96 (m, 2H), 6.92-6.90 (d, *J* = 9.13 Hz, 1H), 6.45-6.42 (dd, *J* = 9.13 Hz, 2.88 Hz, 1H), 3.76 (s, 3H), 2.87-2.82 (m, 1H), 2.64-2.58 (m, 1H), 1.66-1.60 (m, 1H), 0.49-0.45 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 146.2, 132.3, 130.5, 130.4, 129.4, 129.0, 128.6, 128.1, 127.0, 118.7, 114.7, 111.3, 55.4, 19.0, 14.3, 12.2; IR (liquid) v 1498.42, 1358.60, 1340.28, 1241.93, 1166.72, 1090.55 cm⁻¹; HRMS (EI) m/z

calcd. for C₁₉H₁₆N₂O [*M*+]: 288.1261, found: 288.1263.

3-(p-tolyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3f):

Pale yellow oil (67%); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.44 (d, *J* = 6.18 Hz, 1H), 7.30-7.28 (m, 2H), 7.24-7.22 (m, 2H), 7.09-7.03 (m, 2H), 6.94-6.88 (m, 2H), 2.88-2.83 (m, 1H), 2.68-2.62 (m, 1H), 2.43 (s, 3H), 1.66-1.60 (td, *J* = 8.79 Hz, 4.54 Hz, 1H), 0.47-0.44 (q, *J* = 4.79 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 138.1, 133.5, 130.9, 130.5, 129.6, 129.4, 129.3, 127.4, 126.2, 124.8, 117.6, 21.3, 18.9, 14.3, 12.0; IR (liquid) v 1633.41, 1493.60, 1465.63, 1385.60, 1366.32, 1144.55 cm⁻¹; HRMS (EI) m/z calcd. for C₁₉H₁₆N₂ [*M*+]: 272.1312, found: 272.1313.

3-(4-methoxyphenyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3g):

Pale yellow oil (69%); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.44 (m, 1H), 7.33-7.31 (d, J = 8.18 Hz, 2H), 7.08-7.01 (m, 2H), 6.97-6.88 (m, 4H), 3.88 (s, 3H), 2.88-2.82 (m, 1H), 2.67-2.62 (m, 1H), 1.65- 1.60 (td, J = 8.79 Hz, 4.54 Hz, 1H), 0.46-0.42 (q, J = 4.78 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 146.4, 133.5, 130.8, 130.5, 130.3, 129.6, 127.4, 126.2, 124.8, 124.5, 117.4, 114.1, 55.3, 18.7, 14.3, 11.9; IR (liquid) v 1709.59, 1494.56, 1361.50, 1245.79, 1219.76 cm⁻¹; HRMS (EI) m/z calcd. for C₁₉H₁₆N₂O [*M*+]: 288.1262, found: 288.1263.

3-(3-methoxyphenyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2a]quinoline (3h):

Pale yellow oil (58%); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.45 (dd, *J* = 7.52 Hz, 1.10 Hz, 1H), 7.35-7.31 (t, *J* = 7.93 Hz, 1H), 7.09-7.03 (m , 2H), 6.99-6.90 (m, 5H), 3.81 (s, 3H), 2.89-2.83 (m, 1H), 2.69-2.63 (m, 1H), 1.67-1.62 (td *J* = 8.78 Hz, 4.56 Hz, 1H), 0.48-0.45 (q, *J* = 4.78 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 146.9, 133.4, 133.4, 130.8, 130.7, 129.7, 129.6, 127.3, 126.2, 124.9, 121.8, 117.7, 114.6, 113.9, 55.3, 18.9, 14.3, 12.0; IR (liquid) v 1737.55, 1588.09,

1494.56, 1464.67, 1365.35, 1227.47, 1216.86 cm⁻¹; HRMS (EI) m/z calcd. for $C_{19}H_{16}N_2O$ [*M*+]: 288.1262, found: 288.1263.

3,9-diphenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3i):

Pale yellow oil (41%); d.r.: 1:1.1; (major diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.56 (d, *J* = 7.43 Hz, 1H), 7.31-7.27 (m, 3H), 7.25-7.22 (m, 2H), 7.13-6.95 (m, 5H), 6.87-6.79 (m, 3H), 6.61-6.58 (d, *J* = 8.59 Hz, 1H), 3.41-3.36 (t, *J* = 8.36 Hz, 1H), 3.17-3.11 (t, *J* = 8.61 Hz, 1H), 3.03-2.97 (t, *J* = 8.93 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 144.5, 134.1, 131.9, 130.7, 130.7, 130.5, 130.1, 128.4, 127.7, 127.6, 126.4, 126.4, 124.8, 124.8, 117.5, 24.6, 22.6, 19.8; (minor diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.45 (m, 6H), 7.36-7.32 (m, 2H), 7.24-7.14 (m, 3H), 7.11-7.01 (m, 3H), 6.96-6.90 (m, 1H), 3.27-3.23 (dd, J = 8.49 Hz, 4.22 Hz, 1H), 2.98-2.93 (dd, J = 8.48 Hz, 4.55 Hz, 1H), 1.96-1.93 (t, J = 4.35 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 145.6, 139.6, 133.4, 132.1, 131.0, 131.0, 129.8, 129.4, 128.7, 128.6, 128.3, 126.6, 126.4, 126.4, 125.7, 125.1, 117.8, 29.7, 29.5, 24.7; IR (liquid) v 1635.34, 1493.60, 1379.82, 1247.72 cm⁻¹; HRMS (ESI) m/z calcd. for C₂₄H₁₈N₂ [*M*+]: 334.1470, found: 334.1472.

ethyl 3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline-9-carboxylate (3j):

found:330.1372.

phenyl(3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinolin-9-yl)methanone (3k):

Pale yellow oil (98%); ¹H NMR (300 MHz, CDCl₃) δ 7.97-7.94 (d, *J* = 7.45 Hz, 2H), 7.59-7.43 (m, 9H), 7.15-6.97 (m, 4H), 3.71-3.67 (dd, *J* = 8.66 Hz, 3.42 Hz, 1H), 3.71-3.67 (dd, *J* = 8.66 Hz, 3.42 Hz, 1H), 3.52-3.48 (dd, *J* = 8.63 Hz, 3.75 Hz, 1H), 2.62-2.59 (t, *J* = 3.51 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 197.3, 144.0, 137.2, 133.8, 133.2, 131.7, 131.1, 130.3, 129.6, 128.8, 128.6, 128.5, 128.2, 127.4, 125.3, 125.0, 117.6, 30.8, 29.3, 26.8; IR (liquid) v 1652.70, 1637.27, 1397.17, 1380.78, 1334.50, 1220.72, 1033.66, 1023.05 cm⁻¹; HRMS (ESI) m/z calcd. for C₂₅H₁₈N₂O [*M*+]: 362.1419, found: 362.1419.

4-methoxyphenyl)(3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinolin-9yl)methanone (3l):

Pale yellow oil (90%); ¹H NMR (300 MHz, CDCl₃) δ 7.96-7.93 (d, *J* = 8.82 Hz, 2H), 7.51-7.46 (m, 6H), 7.14-6.91 (m, 6H), 3.86 (s, 3H), 3.66-3.62 (dd, *J* = 8.75 Hz, 3.60 Hz, 1H), 3.49-3.45 (dd, *J* = 8.71 Hz, 3.89 Hz, 1H), 2.56-2.54 (t, *J* = 3.73 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 195.5, 163.7, 144.3, 133.8, 131.8, 131.1, 130.5, 130.5, 130.3, 130.3, 129.6, 129.5, 128.8, 128.7, 128.5, 128.5, 127.3, 127.3, 125.3, 125.2, 117.7, 117.6, 113.7, 55.4, 30.3, 28.9, 26.4; IR (liquid) v 1668.12, 1599.66, 1510.95, 1422.24, 1321.00, 1263.15, 1174.44, 1153.22,

1086.69 cm⁻¹; HRMS (ESI) m/z calcd. for $C_{26}H_{20}N_2O_2$ [*M*+]: 392.1525, found: 392.1527 .

4-nitrophenyl)(3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinolin-9-yl)methanone (3m):

Pale yellow oil (76%); ¹H NMR (300 MHz, CDCl₃) δ 8.32-8.29 (d, *J* = 8.57 Hz, 2H), 8.12-8.09 (d, *J* = 8.60 Hz, 2H), 7.55-7.48 (m, 6H), 7.18-7.03 (m, 4H), 3.78-3.73 (dd, *J* = 8.74 Hz, 3.24 Hz, 1H), 3.61-3.57 (dd, *J* = 8.70 Hz, 3.62 Hz, 1H), 2.61-2.59 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 196.1, 150.3, 143.4, 143.3, 141.6, 133.8, 131.5, 131.3, 131.2, 131.2, 130.4, 129.6, 129.2, 129.2, 128.8, 128.7, 128.7, 127.9, 127.8, 127.8, 125.5, 125.5, 124.4, 123.8, 123.8, 117.7, 117.7, 31.7, 30.1, 28.0; IR (liquid) v 1636.30, 1524.45, 1347.03, 1334.50, 1216.86, 1037.52, 1010.52 cm⁻¹;

HRMS (ESI) m/z calcd. for C₂₅H₁₇N₃O₃ [*M*+]: 407.1270, found: 407.1272.

4-phenyl-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4a):

White solid (81%); m.p. 198.8-205.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.63 (d, J = 8.20 Hz, 2H), 7.44-7.42 (d, J = 7.42 Hz, 2H), 7.31-7.26 (m, 2H), 7.25-7.21 (m, 3H), 7.18 (s, 1H), 7.12-7.10 (m, 1H), 6.73-6.67 (m, 1H), 6.67-6.62 (m, 1H), 6.12-6.10 (d, J = 7.69 Hz, 1H), 3.89-3.84 (dd, J = 11.62 Hz, 1.89 Hz, 1H), 3.42-3.38 (d, J = 10.40 Hz, 1H), 3.00-2.93 (m, 1H), 2.38 (s, 3H), 2.00-1.92 (m, 1H), 1.64-1.60 (m, 1H), 1.47-1.42 (q, J = 4.73 Hz, 1H), 1.06-0.99 (td, J = 8.43 Hz, 4.51 Hz, 1H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \ \delta \ 144.0, \ 138.7, \ 136.3, \ 134.3, \ 129.8, \ 128.8, \ 128.7, \ 128.0, \ 127.3, \ 126.9, \ 126.1, \ 123.9, \ 119.7, \ 118.7, \ 116.0, \ 51.4, \ 47.5, \ 21.5, \ 17.8, \ 14.3, \ 9.0; \ \text{IR} \ (\text{liquid}) \ \lor \ 1357.64, \ 1340.28, \ 1165.76, \ 1090.55, \ 1491.67 \ \text{cm}^{-1}; \ \text{HRMS} \ (\text{EI}) \ \text{m/z} \ \text{calcd.} \ \text{for} \ C_{26} H_{24} N_2 O_2 S \ [\textit{M}+]: \ 428.1558, \ \text{found:} \ 428.1559.$

10a-methyl-4-phenyl-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4b):

Pale yellow oil (59%); ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (d, *J* = 8.28, 2H), 7.44-7.42 (m, 2H), 7.30-7.19 (m, 6H), 7.09-7.07 (m, 1H), 6.71-6.67 (m, 1H), 6.66-6.62 (m, 1H), 6.12-6.10 (dd, *J* = 7.82 Hz, 1.18 Hz, 1H), 4.04-4.01 (dd, *J* = 11.88 Hz, 1.84 Hz, 1H), 3.11-3.08 (dd, *J* = 10.64 Hz, 1.60 Hz, 1H), 2.87-2.81 (m, 1H), 2.39 (s, 3H), 1.83-1.79 (dd, *J* = 8.68 Hz, 4.72 Hz, 1H), 1.74-1.71 (m, 1H), 1.22 (s, 3H), 0.77-0.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 138.3, 136.2, 134.1, 129.8, 129.0, 128.8,

127.5, 127.3, 127.0, 126.9, 125.9, 124.0, 119.8, 118.8, 115.8, 55.4, 45.3, 22.8, 21.5, 21.3, 17.4; IR (liquid) v 2359.48, 2341.16, 1491.67, 1359.57, 1342.21, 1275.68, 1261.22, 1136.83 cm⁻¹; HRMS (EI) m/z calcd. for $C_{27}H_{26}N_2O_2S$ [*M*+]: 442.1715, found: 442.1713.

8-methyl-4-phenyl-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4c):

White solid (80%); m.p. 156.6-161.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.63 (d, *J* = 8.32 Hz, 2H), 7.43-7.41 (m, 2H), 7.29-7.19 (m, 5H), 7.18-7.17 (m, 1H), 6.93-6.93 (d, *J* = 1.80 Hz, 1H), 6.51-6.49 (dd, *J* = 8.24 Hz, 1.52 Hz, 1H), 6.02-6.00 (d, *J* = 8.24 Hz, 1H), 3.86-3.83 (dd, *J* = 11.64 Hz, 1.96 Hz, 1H), 3.37-3.34 (d, *J* = 10.36 Hz, 1H), 2.98-2.92 (m, 1H), 2.38 (s, 3H), 2.13 (s, 3H), 1.94-1.88 (td, *J* = 8.46 Hz, 4.88 Hz, 1H), 1.60-1.55 (m, 1H), 1.44-1.40 (q, *J* = 4.79 Hz, 1H), 1.60-1.55 (m, 1H), 1.44-1.40 (q, *J* = 4.79 Hz, 1H), 1.60-1.55 (m, 1H), 1.44-1.40 (q, *J* = 4.79 Hz, 1H), 1.60-1.55 (m, 1H), 1.44-1.40 (q, *J* = 4.79 Hz, 1H), 1.60-1.55 (m, 1H), 1.44-1.40 (q, *J* = 4.79 Hz, 1H), 1.60-1.55 (m, 1H), 1.44-1.40 (q, *J* = 4.79 Hz, 1H), 1.80-1.80 (q, J = 4.79 Hz), 1.80 (q, J

1H), 1.03-0.98 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 136.4, 136.3, 134.4, 129.8, 128.9, 128.8, 128.8, 128.7, 127.2, 126.9, 126.7, 126.0, 123.9, 118.7, 115.7, 51.4, 47.3, 21.5, 20.3, 17.7, 14.3, 9.0; IR (liquid) v 2360.44, 2341.16, 1499.38, 1359.57, 1339.32, 1257.36, 1167.69 cm⁻¹; HRMS (EI) m/z calcd. for C₂₇H₂₆N₂O₂S [*M*+]: 442.1715, found: 442.1718.

8-methoxy-4-phenyl-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4d):

White solid (85%); m.p. 178.0-181.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (d, *J* = 8.28 Hz, 2H), 7.44-7.42 (d, *J* = 7.36 Hz, 2H), 7.30-7.26 (m, 2H), 7.25-7.19 (m, 3H), 7.16 (s, 1H), 6.72-6.71 (d, *J* = 2.92 Hz, 1H), 6.29-6.26 (dd, *J* = 8.84 Hz, 2.92 Hz, 1H), 6.04-6.02 (d, *J* = 8.84 Hz, 1H), 3.85-3.82 (m, 1H), 3.65 (s, 3H), 3.33-3.31 (d, *J* = 10.36 Hz, 1H), 2.95-2.89 (m, 1H), 2.38 (s, 3H), 1.95-1.89 (m, 1H), 1.61-1.56 (m, 1H), 1.48-1.45 (q, *J* = 4.79 Hz, 1H), 1.05-

1.00 (td, J = 8.47 Hz, 4.50 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 143.9, 136.5, 134.3, 132.5, 129.8, 129.0, 128.8, 127.4, 127.3, 126.9, 123.9, 119.6, 115.6, 114.0, 111.1, 55.3, 51.4, 47.0, 21.5, 17.8, 14.7, 9.0; IR (liquid) v 1498.42, 1358.60, 1340.28, 1241.93, 1218.79, 1166.72 cm⁻¹; HRMS (EI) m/z

calcd. for C₂₇H₂₆N₂O₃S [*M*+]: 458.1664, found: 458.1663.

4-(2-fluorophenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4e):

Pale yellow solid (63%); m.p. 68.4 -126.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.62 (d, *J* = 8.22 Hz, 2H), 7.45 (s, 1H), 7.32-7.27 (m, 1H), 7.22-7.19 (d, *J* = 8.14 Hz, 2H), 7.15-7.06 (m, 3H), 7.00-6.94 (m, 1H), 6.70-6.62 (m, 2H), 6.03-6.01 (d, *J* = 7.66 Hz, 1H), 3.90-3.85 (dd, *J* = 11.2 Hz, 2.00 Hz, 1H), 3.60-3.56 (d, *J* = 10.45 Hz, 1H), 2.94-2.86 (t, *J* = 10.99 Hz, 1H), 2.36 (s, 3H), 1.96-1.91 (m, 1H), 1.66-1.61 (m, 1H), 1.47-1.43 (q, *J* = 4.75 Hz, 1H), 1.07-1.01 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 157.5, 143.9, 138.7, 133.9, 129.7, 128.0, 127.9, 127.7, 127.6, 126.9, 126.2,

126.1, 124.4, 124.3, 123.7, 123.6, 122.7, 122.6, 121.3, 121.1, 119.7, 117.8, 116.4, 116.1, 51.4, 47.5, 21.5, 18.0, 14.2, 8.8; IR (liquid) v 3433.64, 1633.41, 1485.74, 1360.53, 1339.32, 1167.69 cm⁻¹; HRMS (EI) m/z calcd. for $C_{26}H_{23}FN_2O_2S$ [*M*+]: 446.1464, found: 446.1468.

4-(3-methoxyphenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4f):

Pale yellow solid (71%); m.p. 81.7-139.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.63 (d, *J* = 8.28 Hz, 2H), 7.25-7.21 (m, 3H), 7.19-7.17 (m, 1H), 7.11-7.09 (dd, *J* = 7.28 Hz, 1.60 Hz, 1H), 7.05-7.03 (d, *J* = 7.96 Hz, 1H), 6.97-6.96 (m, 1H), 6.77-6.75 (m, 1H), 6.73-6.69 (m, 1H), 6.66-6.62 (m, 1H), 6.15-6.13 (d, *J* = 7.92 Hz, 1H), 3.87-3.84 (dd, *J* = 11.68 Hz, 2.00 Hz, 1H), 3.77 (s, 3H), 3.39-3.36 (d, *J* = 10.36 Hz, 1H), 2.98-2.93 (m, 1H), 2.38 (s, 3H), 1.98-1.92 (td, *J* = 8.44 Hz, 4.84 Hz, 1H), 1.62-1.57 (m, 1H), 1.44-1.41 (q, *J* = 4.79 Hz, 1H),

1.04-0.99 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 144.0, 138.7, 138.0, 134.2, 129.8, 128.5, 128.0, 126.9, 126.1, 126.1, 119.7, 118.6, 116.5, 116.2, 112.3, 109.9, 55.2, 51.3, 47.4, 21.5, 17.8, 14.2, 9.0; IR (liquid) v 1597.73, 1578.45, 1490.70, 1339.32, 1164.79 cm⁻¹; HRMS (EI) m/z calcd. for C₂₇H₂₆N₂O₃S [*M*+]: 458.1664, found: 458.1667.

4-(3-fluorophenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinolone (4g):

White solid (58%); m.p. 153.8-188.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.63 (d, *J* = 8.08 Hz, 2H), 7.28-7.21 (m, 5H), 7.13-7.11 (d, *J* = 7.08 Hz, 1H), 7.09-7.07 (d, *J* = 7.08 Hz, 1H), 6.91-6.87 (m, 1H), 6.75-6.71 (m, 1H), 6.69-6.65 (m, 1H), 6.10-6.08 (d, *J* = 7.96 Hz, 1H), 3.88-3.85 (m, 1H), 3.40-3.37 (d, *J* = 10.44 Hz, 1H), 2.98-2.92 (t, *J* = 11.16 Hz, 1H), 2.38 (s, 3H), 1.99-1.94 (m, 1H), 1.64-1.58 (m, 1H), 1.45-1.41 (q, *J* = 4.71 Hz, 1H), 1.07-1.01 (td, *J* = 8.41 Hz, 4.58 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 162.1, 144.1, 139.0, 138.9, 138.5, 134.3,

130.4, 130.3, 129.9, 128.2, 127.4, 127.4, 126.9, 126.2, 126.2, 120.0, 119.3, 119.3, 118.5, 116.9, 114.1, 113.9, 111.0, 110.7, 51.4, 47.4, 21.5, 17.7, 14.3, 9.0; IR (liquid) v 2359.48, 2341.16, 1609.31, 1582.31, 1491.67, 1360.53, 1340.28, 1167.69 cm⁻¹; HRMS (EI) m/z calcd. for $C_{26}H_{23}FN_2O_2S$ [*M*+]: 446.1464, found: 446.1465.

2-tosyl-4-(3-(trifluoromethyl)phenyl)-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4h):

Pale yellow solid (59%); m.p. 83.4-126.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 3H), 7.58-7.56 (d, *J* = 7.72 Hz, 1H), 7.47-7.45 (m, 1H), 7.41-7.37 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, J = 7.20 Hz, 1.76 Hz, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (dd, J = 7.20 Hz, 1.76 Hz, 1H), 6.75-6.71 (m, 1H), 7.27-7.26 (m, 3H), 7.15-7.12 (m, 1H), 7.27-7.26 (m, 2H), 7.20 Hz, 1.76 Hz, 1H), 7.27-7.26 (m, 2H), 7.20 Hz, 1H), 7.27-7.26 Hz, 1H), 7.27-

1H), 6.70-6.66 (m, 1H), 6.07-6.05 (dd, J = 7.88 Hz, 1.00 Hz, 1H), 3.90-3.86 (dd, J = 11.74 Hz, 1.98 Hz, 1H), 3.40-3.38 (d, J = 10.32 Hz, 1H), 3.00-2.94 (m, 1H), 2.39 (s, 3H), 2.01-1.95 (td, J = 8.47 Hz, 4.86 Hz, 1H), 1.66-1.60 (m, 1H), 1.45-1.42 (q, J = 4.83 Hz, 1H), 1.09-1.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 138.4, 137.4, 134.3, 131.7, 131.4, 131.1, 130.8, 130.0, 129.4, 128.3, 127.2, 127.1, 126.9, 126.3, 126.3, 125.4, 123.9, 123.8, 122.7, 120.2, 120.2, 120.1, 118.5, 117.3, 51.4, 47.3, 21.6, 17.7, 14.3, 9.1; IR (liquid) v 1491.67, 1354.75, 1330.64, 1306.54, 1166.72, 1124.3 cm⁻¹; HRMS (EI) m/z calcd. for C₂₇H₂₃F₃N₂O₂S [*M*+]: 496.1432, found: 496.1435.

4-(p-tolyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4i):

Pale yellow solid (73%); m.p. 84.0-136.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.62 (d, *J* = 8.24 Hz, 2H), 7.32-7.30 (d, *J* = 8.12 Hz, 2H), 7.25-7.21 (m, 2H), 7.13 (s, 1H), 7.11-7.08 (m, 3H), 6.71-6.67 (m, 1H), 6.65-6.62 (m, 1H), 6.12-6.10 (d, *J* = 7.84 Hz, 1H), 3.87-3.84 (dd, *J* = 11.60 Hz, 1.96 Hz, 1H), 3.41-3.38 (d, *J* = 10.40 Hz, 1H), 2.98-2.92 (m, 1H), 2.37 (s, 3H), 2.31 (s, 3H), 1.97-1.92 (td, *J* = 8.44 Hz, 4.88 Hz, 1H), 1.62-1.56 (m, 1H), 1.46-1.42 (q, *J* = 4,76 Hz, 1H), 1.04-0.99 (td, *J* = 8.46 Hz, 4.52 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 138.8,

137.1, 134.2, 133.4, 129.8, 129.5, 129.0, 128.0, 126.9, 126.1, 123.8, 119.6, 118.6, 115.3, 51.4, 47.5, 21.5, 21.1, 17.8, 14.3, 8.9; IR (liquid) v 1492.63, 1357.64, 1338.36, 1166.72, 1090.55 cm⁻¹; HRMS (EI) m/z calcd. for $C_{27}H_{26}N_2O_2S$ [*M*+]: 442.1715, found: 442.1717.

4-(4-methoxyphenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4j):

White solid (58%); m.p. 176.0-191.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.62 (d, *J* = 8.28 Hz, 2H), 7.37-7.33 (d, *J* = 8.92 Hz, 2H), 7.24-7.22 (d, *J* = 7.97 Hz, 2H), 7.11-7.09 (dd, *J* = 7.22 Hz, 1.73 Hz, 1H), 7.05 (s, 1H), 6.85-6.81 (d, *J* = 8.91 Hz, 2H), 6.72-6.67 (m, 1H), 6.66-6.62 (m, 1H), 6.12-6.09 (dd, *J* = 7.93 Hz, 1.05 Hz, 1H), 3.87-3.83 (dd, *J* = 11.58 Hz, 2.02 Hz, 1H), 3.79 (s, 3H), 3.43-3.40 (d, *J* = 10.37 Hz, 1H), 2.96-2.91 (m, 1H), 2.38 (s, 3H), 1.98-1.92 (td, *J* = 8.46 Hz, 4.86 Hz, 1H), 1.63-1.59 (m, 1H), 1.45-1.41 (g, *J* = 4.79 Hz, 1H),

1.05-0.99 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 143.9, 138.8, 134.2, 129.8, 128.9, 128.8, 128.0, 126.9, 126.1, 126.1, 125.2, 119.6, 118.6, 114.5, 114.2, 55.3, 51.5, 47.5, 21.5, 17.9, 14.3, 8.9; IR (liquid) v 1509.99, 1491.67, 1340.28, 1249.65, 1166.72 cm⁻¹; HRMS (EI) m/z calcd. for C₂₇H₂₆N₂O₃S [*M*+]: 458.1664, found: 458.1662.

4-(4-(tert-butyl)phenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4k):

Pale yellow solid (84%); m.p. 188.4-191.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.62 (d, *J* = 8.32 Hz, 2H), 7.38-7.35 (m, 2H), 7.31-7.29 (m, 2H), 7.25-7.21 (m, 2H), 7.16 (s, 1H), 7.12-7.09 (dd, *J* = 7.28 Hz, 1.68 Hz, 1H), 6.73-6.69 (m, 1H), 6.66-6.62 (m, 1H), 6.14-6.12 (dd, *J* = 7.98 Hz, 0.86 Hz, 1H), 3.86-3.82(dd, *J* = 11.60 Hz, 2.08 Hz, 1H), 3.40-3.37 (d, *J* = 10.36 Hz, 2.99-2.93 (m, 1H), 2.37 (s, 3H), 1.98-1.92 (td, *J* = 8.46 Hz, 4.84 Hz, 1H), 1.62-1.57 (m, 1H), 1.46-1.43 (q, *J* = 4.79 Hz, 1H), 1.29 (s, 9H), 1.04-0.98 (m, 1H); ¹³C NMR (100 MHz,

CDCl₃) δ 150.4, 143.9, 138.9, 134.2, 133.3, 129.8, 128.9, 128.0, 126.9, 126.1, 126.1, 125.7, 123.5, 119.6, 118.7, 115.5, 51.4, 47.5, 34.5, 31.3, 21.5, 17.9, 14.3, 8.9; IR (liquid) v 1491.67, 1359.57, 1339.32, 1166.72, 1091.51 cm⁻¹; HRMS (EI) m/z calcd. for C₃₀H₃₂N₂O₂S [*M*+]: 484.2184, found: 484.2185.

4-(4-bromophenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinolone

(**4I**):

White solid (65%); m.p. 180.1-187.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.62 (d, *J* = 8.28 Hz, 2H), 7.40-7.38 (m, 2H), 7.30-7.27 (m, 2H), 7.25-7.23 (d, *J* = 7.40 Hz, 2H), 7.18 (s, 1H), 7.13-7.11 (dd, *J* = 7.20 Hz, 1.72 Hz, 1H), 6.74-6.70 (m, 1H), 6.69-6.65 (m, 1H), 6.07-6.05 (dd, *J* = 7.92 Hz, 0.88 Hz, 1H), 3.88-3.84 (dd, *J* = 11.68 Hz, 2.00 Hz, 1H), 3.38-3.36 (d, *J* = 10.32 Hz, 1H), 2.97-2.92 (m, 1H), 2.38 (s, 3H), 1.99-1.93 (td, *J* = 8.45 Hz, 4.86 Hz, 1H), 1.64-1.58 (m, 1H), 1.43-1.39 (q, *J* = 4.81 Hz, 1H), 1.06-1.01 (m, 1H); ¹³C NMR (100 MHz, CDCl₃)

 δ 144.1, 138.4, 135.3, 134.3, 131.9, 129.9, 128.2, 127.5, 126.9, 126.2, 126.2, 125.4, 120.8, 120.0, 118.5, 116.4, 51.4, 47.4, 21.5, 17.7, 14.3, 9.0; IR (liquid) v 1491.67, 0359.57, 1339.32, 1166.72, 1090.55 cm^{-1}; HRMS (EI) m/z calcd. for C_{26}H_{23}BrN_2O_2S [\textit{M+}]: 506.0664, found: 506.0662.

2-tosyl-4-(4-(trifluoromethyl)phenyl)-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4m):

Pale yellow solid (42%); m.p. 153.5-162.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (d, *J* = 8.28 Hz, 2H), 7.52 (s, 4H), 7.31 (s, 1H), 7.27-7.25 (m, 2H), 7.15-7.12 (dd, *J* = 7.20 Hz, 1.72 Hz, 1H), 6.75-6.71 (m, 1H), 6.70-6.66 (m, 1H), 6.06-6.04 (m, 1H), 3.90-3.86 (dd, *J* = 11.72 Hz, 2.00 Hz, 1H), 3.40-3.37 (d, *J* = 10.32 Hz, 1H), 3.01-2.95 (m, 1H), 2.39 (s, 3H), 2.01-1.96 (td, *J* = 8.44 Hz, 4.88 Hz, 1H), 1.65-1.60 (m, 1H), 1.45-1.42 (q, *J* = 4.81, 1H), 1.09-1.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 139.9, 138.3, 134.3, 130.0, 129.1, 128.8,

128.3, 126.9, 126.3, 126.3, 125.9, 125.8, 125.8, 125.8, 125.5, 123.9, 122.8, 120.1, 118.5, 117.8, 51.4, 47.4, 21.5, 17.7, 14.3, 9.1; IR (liquid) \vee 1611.23, 1492.63, 1323.89, 1166.72, 1121.40 cm⁻¹; HRMS (EI) m/z calcd. for C₂₇H₂₃F₃N₂O₂S [*M*+]: 496.1432, found: 496.1434.

4-(3,5-difluorophenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4n):

White solid (50%); m.p. 215.5-216.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.63 (d, *J* =8.24 Hz, 2H), 7.27-7.26 (m, 2H), 7.22 (s, 1H), 7.15-7.12 (dd, *J* = 7.26 Hz, 1.42 Hz, 1H), 6.95-6.90 (m, 2H), 6.78-6.74 (m, 1H), 6.72-6.68 (m, 1H), 6.66-6.61 (m, 1H), 6.09-6.07 (d, *J* = 8.00 Hz, 1H), 3.88-3.85 (dd, *J* = 11.72 Hz, 1.72 Hz, 1H), 3.37-3.35 (d, *J* = 1-.36 Hz, 1H), 2.97-2.91 (m, 1H), 2.40 (s, 3H), 1.64-1.59 (m, 1H), 1.43-1.40 (q, *J* = 4.81 Hz, 1H), 1.08-1.03 (td, *J* = 8.48 Hz, 4.64 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 164.7, 162.3, 162.2, 144.3, 140.3, 140.3, 140.2, 138.3, 134.3, 130.0, 128.3, 126.9, 126.4, 126.4, 126.4, 126.3,

120.2, 118.4, 117.8, 106.7, 106.6, 106.5, 106.4, 102.6, 102.4, 102.1, 51.4, 47.2, 21.6, 17.7, 14.2, 9.1; IR (liquid) \vee 2358.52, 1616.06, 1590.02, 1492.63, 1350.89, 1167.69, 983.52 cm⁻¹; HRMS (EI) m/z calcd. for C₂₆H₂₂F₂N₂O₂S [*M*+]: 464.1370, found: 464.1372.

4-(3,5-bis(trifluoromethyl)phenyl)-2-tosyl-1,2,9b,10,10a,10bhexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4o):

White solid (68%); m.p. 189.0-200.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 2H), 7.69 (s, 1H), 7.68-7.66 (d, *J* = 8.32 Hz, 2H), 7.35 (s, 1H), 7.30-2.28 (d, *J* = 8.00 Hz, 2H), 7.17-7.15 (m, 1H), 6.79-6.75 (m, 1H), 6.74-6.70 (m, 1H), 6.03-6.01 (dd, *J* = 7.84 Hz, 1.08 Hz, 1H), 3.90-3.87 (dd, *J* = 11.84 Hz, 2.04 Hz, 1H), 3.38-3.36 (d, *J* = 10.28 Hz, 1H), 3.02-2.96 (m, 1H), 2.41 (s, 3H), 2.03-1.98 (td, *J* = 8.46 Hz, 4.84 Hz, 1H), 1.67-1.62 (tdd, *J* = 8.18 Hz, 5.07 Hz, 1.19 Hz, 1H), 1.44-1.40 (q, *J* = 4.85 Hz, 1H), 1.12-1.06 (m, 1H); ¹³C NMR (100 MHz, CDCl₃)

 δ 144.5, 139.0, 138.0, 134.2, 132.7, 132.4, 132.0, 131.7, 130.1, 128.5, 126.9, 126.5, 126.4, 125.4, 124.6, 123.5, 123.5, 121.9, 120.6, 120.5, 118.9, 118.2, 51.4, 47.1, 21.6, 17.6, 14.2, 9.2; IR (liquid) v 1491.67, 1362.46, 1335.46, 1306.54, 1276.65, 1165.76, 1129.12 cm^{-1}; HRMS (EI) m/z calcd. for $C_{28}H_{22}F_6N_2O_2S$ [*M*+]: 564.1306, found: 564.1307.

4-phenyl-2-(phenylsulfonyl)-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinolone (4p):

White solid (74%); m.p. 211.7-217.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.76 (m, 2H), 7.56-7.52 (m, 1H), 7.47-7.42 (m, 4H), 7.31-7.27 (m, 2H), 7.25-7.19 (m, 2H), 7.12-7.10 (dd, *J* = 7.22 Hz, 1.75 Hz, 1H), 6.72-6.68 (m, 1H), 6.66-6.63 (m, 1H), 6.13-6.10 (dd, *J* = 7.96 Hz, 1.08 Hz, 1H), 3.90-3.87 (dd, *J* = 11.59 Hz, 2.01 Hz, 1H), 3.42-3.40 (d, *J* = 10.39 Hz, 1H), 2.99-2.94 (m, 1H), 1.99-1.93 (td, *J* = 8.47 Hz, 4.86 Hz, 1H), 1.64-1.58(tdd, *J* = 8.21 Hz, 5.07 Hz, 1.24 Hz, 1H),

1.46-1.43 (q, J = 4.80 Hz, 1H), 1.06-1.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 137.2, 136.2, 133.1, 129.2, 128.9, 128.8, 128.0, 127.4, 126.9, 126.2, 126.1, 123.9, 119.8, 118.6, 115.8, 51.4, 47.5, 17.8, 14.3, 9.0; IR (liquid) v 1635.34, 1491.67, 1358.60, 1340.28, 1250.61, 1168.65, 1090.55 cm⁻¹; HRMS (EI) m/z calcd. for C₂₈H₂₂F₆N₂O₂S [*M*+]: 414.1402, found: 414.1404.

4-phenyl-2-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,9b,10,10a,10bhexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4q):

Pale yellow solid (71%); m.p. 218.8-223.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.86 (d, *J* = 8.18 Hz, 2H), 7.71-7.69 (d, *J* = 8.27 Hz, 2H), 7.44-7.42 (m, 2H), 7.32-7.28 (m, 2H), 7.26-7.22 (m, 1H), 7.15 (s, 1H), 7.12-7.09 (m, 1H), 6.69-6.62 (m, 2H), 6.03-6.00 (m, 1H), 3.92-3.89 (dd, *J* = 11.32 Hz, 2.20 Hz, 1H), 3.55-3.52 (d, *J* = 10.36 Hz, 1H), 2.97-2.91 (t, *J* = 11.05 Hz, 1H), 2.00-1.94 (td, *J* = 8.48 Hz, 4.86

Hz, 1H), 1.67-1.62 (tdd, J = 8.20 Hz, 5.03 Hz, 1.28 Hz, 1H), 1.49-1.46 (q, J = 4.83 Hz, 1H), 1.9-1.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 138.6, 135.8, 134.8, 134.5, 130.6, 128.9, 128.1, 127.7, 127.4, 126.4, 126.4, 126.3, 126.3, 126.2, 126.1, 124.4, 124.0, 121.7, 120.0, 118.3, 115.4, 51.6, 47.8, 17.8, 14.3, 8.9; IR (liquid) v 1634.38, 1491.67, 1364.39, 1321.96, 1171.54, 1133.94, 1061.62 cm⁻¹; HRMS (EI) m/z calcd. for C₂₈H₂₂F₆N₂O₂S [*M*+]: 482.1276, found: 482.1280.

1-phenyl-3-tosyl-4,4a-dihydro-3H-pyrazino[1,2-a]quinoline (5):

Pale yellow solid (67%); m.p. 174.3-176.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.69-7.66 (d, *J* = 8.24 Hz, 2H), 7.47-7.45 (d, *J* = 7.04 Hz, 2H), 7.33-7.21 (m, 5H), 7.08 (s, 1H), 6.88-6.85 (m, 1H), 6.78-6.72 (m, 1H), 6.63-6.58 (m, 1H), 6.48-6.45 (d, *J* = 9.80 Hz, 1H), 6.12-6.09 (d, *J* = 8.09 Hz, 1H), 5.69-5.64 (dd, *J* = 9.77 Hz, 5.23 Hz, 1H), 3.74-3.70 (m, 1H), 3.66-3.61 (m, 1H), 3.27-3.20 (m, 1H), 2.40 (s, 3H); ¹³C NMR (75 MHz, 1H), 7.08 (s, 1H), 7.08 (s, 2H), 7.08 (

CDCl₃) δ 144.1, 140.4, 135.8, 134.5, 130.0, 128.9, 128.8, 128.0, 127.4, 127.3, 127.0, 125.3, 124.6, 121.6, 120.8, 119.2, 117.4, 115.5, 53.8, 47.4, 21.6; IR (liquid) v 1631.48, 1488.78, 1351.86, 1165.76, 1092.48, 1025.94, 1002.80 cm⁻¹; HRMS (EI) m/z calcd. for C₂₅H₂₂N₂O₂S [*M*+]: 414.1402, found: 414.1398.

(8bS,9S,9aR)-3,9-diphenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7a):

Pale yellow oil (65%); d.r.: 3.0:1; (major diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.45 (m, 6H), 7.36-7.32 (m, 2H), 7.24-7.14 (m, 3H), 7.11-7.01 (m, 3H), 6.96-6.90 (m, 1H), 3.27-3.23 (dd, *J* = 8.49 Hz, 4.22 Hz, 1H), 2.98-2.93 (dd, *J* = 8.48 Hz, 4.55 Hz,

1H), 1.96-1.93 (t, J = 4.35 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 145.6, 139.6, 133.4, 132.1, 131.0, 131.0, 129.8, 129.4, 128.7, 128.6, 128.3, 126.6, 126.4, 126.4, 125.7, 125.1, 117.8, 29.7, 29.5, 24.7; (minor diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.56 (d, J = 7.43 Hz, 1H), 7.31-7.27 (m, 3H), 7.25-7.22 (m, 2H), 7.13-6.95 (m, 5H), 6.87-6.79 (m, 3H), 6.61-6.58 (d, J = 8.59 Hz, 1H), 3.41-3.36 (t, J = 8.36 Hz, 1H), 3.17-3.11 (t, J = 8.61 Hz, 1H), 3.03-2.97 (t, J = 8.93 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 144.5, 134.1, 131.9, 130.7, 130.7, 130.5, 130.1, 128.4, 127.7, 127.6, 126.4, 126.4, 124.8, 124.8, 117.5, 24.6, 22.6, 19.8; IR (liquid) v 1635.34, 1493.60, 1379.82, 1247.72 cm⁻¹; HRMS (ESI) m/z calcd. for C₂₄H₁₈N₂ [*M*+]: 334.1470, found: 334.1472.; The product major diastereomer was analyzed by HPLC to determine the enantiomeric excess: 95% *ee* (CHIRALPAK OD-H, hexane/i-PrOH = 70/30, flow rate: 0.5 mL/min, T = 40 °C, 254 nm), tR (major) = 9.530 min, tR (minor) = 29.729 min.; The product minor diastereomer was analyzed by HPLC to determine the enantiomeric excess: 95% *ee* (CHIRALPAK OD-H, hexane/i-PrOH = 70/10, flow rate: 0.3 mL/min, T = r.t, 254 nm), tR (minor) = 52.908 min, tR (major) = 80.654 min.

(8bS,9S,9aR)-9-phenyl-3-(m-tolyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7b):

Me N Ph Pale yellow oil (65%); d.r.: 3.3:1; (major diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.44 (m, 1H), 7.36-7.31 (m, 4H), 7.26-7.23 (m, 3H), 7.16-7.14 (m, 2H), 7.11-7.06 (m, 2H), 6.99-6.91 (m, 2H), 3.26-3.22 (dd, *J* = 8.50 Hz, 4.22 Hz, 1H), 2.97-2.93 (dd, *J* = 8.50 Hz, 4.56 Hz, 1H), 2.40 (s, 3H), 1.96-1.93 (t, *J* = 4.36 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 145.5, 139.6, 138.5, 133.5, 132.0, 131.2, 130.8, 130.0, 129.7, 129.0, 128.6, 128.6, 126.6, 126.5, 126.4, 126.4, 125.7, 125.0, 117.8, 29.7, 29.6, 24.7, 21.4; (minor diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.57-7.54 (m, 1H), 7.12-6.97 (m, 7H), 6.92 (s, 1H), 6.86-6.79 (m, 3H),

6.62-6.59 (d, J = 8.21 Hz, 1H), 3.38-3.32 (t, J = 8.37 Hz, 1H), 3.16-3.10 (t, J = 8.71 Hz, 1H), 3.01-2.95 (t, J = 8.75 Hz, 1H), 2.26 (b, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.4, 134.2, 134.1, 131.6, 130.7, 130.7, 130.3, 130.0, 128.5, 127.7, 127.6, 126.4, 126.4, 124.8, 124.8, 117.7, 24.6, 22.6, 21.2, 19.8; IR (liquid) v 1635.34, 1493.60, 1375.96, 1143.58 cm⁻¹; HRMS (ESI) m/z calcd. for $C_{25}H_{20}N_2$ [*M*+]: 348.1626, found: 348.1628.; The product major diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% *ee* (CHIRALPAK OD-H, hexane/i-PrOH = 70/30, flow rate: 0.5 mL/min, T = 40 °C, 254 nm), tR (major) = 9.751 min, tR (minor) = 64.132 min.; The product minor diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% *ee* (CHIRALPAK AD-H, hexane/i-PrOH = 70/30, flow rate: 0.3 mL/min, T = r.t, 254 nm), tR (minor) = 18.050 min, tR (major) = 43.683 min.

(8bS,9S,9aR)-7-methoxy-3,9-diphenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7c):

Pale yellow oil (58%); d.r.: 3.1:1; (major diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.44 (s, 5H), 7.37-7.32 (m, 2H), 7.24-7.14 (m, 3H), 7.00-6.94 (m, 3H), 6.49-6.45 (dd, *J* = 9.14 Hz, 2.90 Hz, 1H), 3.75 (s, 3H), 3.26-3.22 (dd, *J* = 8.45 Hz, 4.29 Hz, 1H), 2.93-2.89 (dd, *J* = 8.47 Hz, 4.51 Hz, 1H), 1.97-1.94 (t, *J* = 4.33 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 156.7, 144.9, 139.6, 132.2, 130.7, 130.5, 129.5, 128.7, 128.6, 128.2, 128.0, 127.0, 126.4, 125.7, 118.9, 114.5, 112.0, 55.4, 29.7, 29.7, 24.7; (minor diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.61-

7.21 (m, 5H), 7.10-7.09 (m, 1H), 7.06-6.98 (m, 3H), 6.93 (s, 1H), 6.88-6.86 (m, 2H), 6.52-6.49 (m, 1H), 6.37-6.33 (m, 1H), 3.79 (s, 3H), 3.37-3.31 (t, J = 8.37 Hz, 1H), 3.11-3.05 (t, J = 8.74 Hz, 1H), 3.00-2.94 (t, J = 8.80 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 156.5, 143.8, 134.1, 131.8, 130.6, 130.6, 130.1, 130.0, 128.5, 128.4, 128.4, 127.8, 127.7, 127.7, 127.7, 127.6, 126.4, 126.4, 126.4, 118.6, 115.1, 111.5, 55.4, 24.7, 22.8, 19.7; IR (liquid) v 1636.30, 1503.24, 1243.86, 1146.47, 1039.44 cm⁻¹; HRMS (ESI) m/z calcd. for C₂₅H₂₀N₂O [*M*+]: 364.1576 , found: 364.1578.; The product major diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% *ee* (CHIRALPAK OD-H, hexane/i-PrOH = 90/10, flow rate: 0.5 mL/min, T = 40 °C, 254 nm), tR (major) = 23.208 min, tR (minor) = 27.969 min.; The product

minor diastereomer was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/i-PrOH =80/20, flow rate: 0.5 mL/min, T = r.t, 254 nm), tR (major) = 23.644 min, tR (minor) = 32.208 min.

(8bS,9S,9aR)-7-methyl-3,9-diphenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinolone (7d):

Pale yellow oil (66%); d.r.: 3.7:1; (major diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.44 (s, 5H), 7.36-7.28 (m, 3H), 7.23-7.14 (m, 3H), 7.00 (s, 1H), 6.92-6.89 (d, *J* = 8.50 Hz, 1H), 6.75-6.72 (d, *J* = 8.44 Hz, 1H), 3.25-3.21 (dd, *J* = 8.47 Hz, 4.21 Hz, 1H), 2.92-2.88 (dd, *J* = 8.46 Hz, 4.52 Hz, 1H), 2.26 (s, 3H), 1.93-1.90 (t, *J* = 4.31 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 145.3, 139.6, 134.9, 132.1, 131.0, 130.9, 130.4, 130.2, 129.5, 128.7, 128.6, 128.3, 127.2, 126.4, 126.3, 125.7, 117.6, 29.6, 29.5, 24.6, 20.5; (minor diastereomer) ¹H NMR (300 MHz, CD₂Cl₂) δ 7.32-7.31 (m, 1H), 7.19 (b, 3H) 7.00-6.89 (m, 4H), 6.81-6.75 (m, 4H), 6.55-6.51 (m, 1H), 6.39-6.36 (d, *J* = 8.46 Hz, 1H), 3.24-3.18 (t, *J* = 8.33 Hz, 1H), 3.04-2.98 (t, *J*

= 8.75 Hz, 1H), 2.90-2.84 (t, J = 8.80, 1H), 2.22 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.3, 134.4, 134.2, 131.9, 131.8, 130.7, 130.5, 130.4, 130.4, 130.3, 128.4, 127.6, 127.6, 127.6, 127.1, 127.1, 127.0, 126.4, 126.4, 124.7, 117.4, 117.4, 24.5, 22.6, 20.7, 19.7; IR (liquid) v 1638.23, 1529.27, 1503.24, 1380.78, 1380.78, 1264.11, 1242.90 cm⁻¹; HRMS (ESI) m/z calcd. for C₂₅H₂₀N₂ [*M*+]: 348.1626, found: 348.1629.; The product major diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% *ee* (CHIRALPAK OD-H, hexane/i-PrOH = 90/10, flow rate: 0.5 mL/min, T = 40 °C, 254 nm), tR (major) = 15.236 min, tR (minor) = 40.128 min.; The product minor diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% *ee* (CHIRALPAK OD-H, hexane/i-PrOH = 90/10, flow rate: 0.3 mL/min, T = r.t, 254 nm), tR (minor) = 24.110 min, tR (major) = 34.446 min.

(8bS,9S,9aR)-3-(4-methoxyphenyl)-9-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7e):

Pale yellow oil (68%); d.r.: 2.1:1; (major diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.44 (d, *J* = 7.41 Hz, 1H), 7.37-7.31 (m, 4H), 7.26-7.06 (m, 5H), 7.00-6.92 (m, 4H), 3.89 (s, 3H), 3.26-3.22 (dd, *J* = 8.49 Hz, 4.22 Hz, 1H), 2.96-2.92 (dd, *J* = 8.47 Hz, 4.50 Hz, 1H), 1.93-1.90 (t, *J* = 4.30 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.7, 145.1, 139.7, 133.6, 130.9, 130.7, 130.5, 129.7, 128.6, 126.7, 126.4, 126.4, 125.7, 125.0, 124.4, 117.5, 114.2, 55.3, 29.5, 29.4, 24.7; (minor diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.57-7.54 (dd, *J* = 7.62 Hz, 1.49 Hz, 1H), 7.26 (m, 1H), 7.11-6.96 (m, 5H), 6.89-6.79 (m, 6H), 6.63-6.60 (d, *J* = 7.89 Hz, 1H), 3.81 (s, 3H), 3.37-3.31 (t, *J* = 8.39 Hz, 1H), 3.14-3.08 (t, *J* = 8.72 Hz, 1H), 2.98-2.93 (t, *J* = 8.76 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.3, 143.9, 134.3, 134.2, 134.2, 130.7,

130.7, 130.1, 130.1, 130.1, 130.0, 130.0, 127.6, 127.6, 126.4, 126.4, 126.4, 126.3, 124.8, 124.7, 124.7, 124.7, 124.7, 124.2, 117.3, 117.3, 113.9, 55.3, 24.4, 22.4, 19.8; IR (liquid) v 1637.27, 1493.60, 1248.68, 1029.80 cm⁻¹; HRMS (ESI) m/z calcd. for $C_{25}H_{20}N_2O$ [*M*+]: 394.1576, found: 394.1578.; The product major diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% ee (CHIRALPAK OD-H, hexane/i-PrOH = 70/30, flow rate: 0.5 mL/min, T = 40 °C, 254 nm), tR (major) = 11.302 min, tR (minor) = 70.248 min.; The product minor diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% ee (CHIRALPAK AD-H, hexane/i-PrOH = 80/20, flow rate: 0.5 mL/min, T = r.t, 254 nm), tR (major) = 21.015 min, tR (minor) = 32.129 min.

(8bS,9S,9aR)-3-(4-(tert-butyl)phenyl)-9-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7f):

Pale yellow oil (65%); d.r.: 2.3:1; (major diastereomer) ¹H NMR (300 MHz, CDCl₃)

δ 7.48-7.45 (m, 3H), 7.38-7.31 (m, 4H), 7.26-7.06 (m, 5H), 6.99-6.92 (m, 2H), 3.28-3.24 (d, *J* = 8.36 Hz, 4.20 Hz, 1H), 2.97-2.93 (dd, *J* = 8.45 Hz, 4.54 Hz, 1H), 1.96-1.93 (t, *J* = 4.26 Hz, 1H), 1.39 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 151.5, 145.3, 139.5, 133.5, 131.1, 130.5, 129.7, 129.1, 129.0, 128.6, 126.7, 126.4, 126.4, 125.7, 125.6, 125.1, 117.8, 34.7, 31.3, 29.6, 29.5, 24.6; (minor diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.57-5.54 (dd, *J* = 7.55 Hz, 1.19 Hz, 1H), 7.26 (b, 3H), 7.11-6.96(m, 5H), 6.92 (s, 1H), 6.85-6.80 (m, 3H), 6.65-6.62 (d, *J* = 8.32 Hz, 1H), 3.38-3.32 (t, *J* = 8.35 Hz, 1H), 3.14-3.09 (t, *J* = 8.70 Hz, 1H), 3.00-2.94 (t, *J* = 8.73 Hz, 1H)1.31 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) 150.9, 144.2, 134.3, 134.2, 130.7, 130.5, 130.0, 128.9, 128.3, 127.6, 126.4, 125.4, 124.8, 124.7, 117.5, 34.6, 31.3, 24.5, 22.5, 19.8; IR (liquid) v 1638.23, 1534.10, 1492.63, 1464.67, 1376.93, 1265.09, 1145.51 cm⁻¹; HRMS (ESI) m/z calcd. for C₂₈H₂₆N₂ [*M*+]: 390.2096, found: 390.2097.; The product major diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% ee (CHIRALPAK OD-H, hexane/i-PrOH = 70/30, flow rate: 0.5 mL/min, T = 40 °C, 254 nm), tR (major) = 8.591 min, tR (minor) = 37.323 min.; The product minor diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% ee (CHIRALPAK OD-H, hexane/i-PrOH = 70/30, flow rate: 0.5 mL/min, T = 40 °C, 254 nm), tR (major) = 8.591 min, tR (minor) = 37.323 min.; The product minor diastereomer was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK AD-H, hexane/i-PrOH =90/10, flow rate: 0.3 mL/min, T = r.t, 254 nm), tR (major) = 29.976 min, tR (minor) = 45.743 min.

(8bS,9S,9aR)-3-phenyl-9-(4-(trifluoromethyl)phenyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7g):

Pale yellow oil (88%); d.r.: >20:1; ¹H NMR (300 MHz, CD_2Cl_2) δ 7.62-7.59 (d, J = 8.20 Hz, 2H), 7.49-7.43 (m, 6H), 7.28-7.26 (d, J = 8.14 Hz, 2H), 7.12-7.04 (m, 2H), 6.97-6.92 (m, 2H), 3.30-3.25 (dd, J = 8.62 Hz, 4.17 Hz, 1H), 3.06-3.01 (dd, J = 8.62 Hz, 4.51 Hz, 1H), 2.02-1.99 (t, J = 4.31 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 144. 9, 140.0, 140.0, 133.4, 131.9, 131.2, 131.0, 131.0, 129.8, 129.8, 129.5, 129.4, 128.8, 128.8, 128.8, 128.4, 128.4, 128.4, 127.0, 127.0, 125.8, 125.8, 125.8, 125.6, 125.6, 125.5, 125.5, 125.5, 125.2, 117.8, 117.8, 30.1, 29.3, 25.2; IR (liquid) v 1635.34, 1530.24, 1493.60, 1380.78, 1325.82, 1163.83, 1120.44, 1068.37 cm⁻¹; HRMS (ESI) m/z calcd. for $C_{25}H_{17}F_3N_2$ [*M*+]: 402.1344, found: 402.1344 ; The

product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (CHIRALPAK AD-H, hexane/i-PrOH = 50/50, flow rate: 0.5 mL/min, T = r.t, 254 nm), tR (minor) = 20.281 min, tR (major) = 36.392 min.

(8bS,9S,9aR)-9-(4-chlorophenyl)-3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7h):

Pale yellow oil (90%); d.r.: 1.6:1; (major diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.44 (m, 6H), 7.32-7.29 (d, *J* = 8.42 Hz, 2H), 7.11-7.00 (m, 5H), 6.98-6.91 (m, 1H), 3.24-3.20 (dd, *J* = 8.55 Hz, 4.21 Hz, 1H), 2.94-2.89 (dd, *J* = 8.54 Hz, 4.53 Hz, 1H), 1.93-1.90 (t, *J* = 4.35 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 145.2, 138.1, 133.4, 132.2, 132.0, 131.1, 131.0, 129.8, 129.7, 129.4, 128.8, 128.7, 128.7, 128.3, 128.3, 127.0, 126.8, 126.0, 125.1, 125.1, 125.1, 117.8, 117.7, 29.6, 29.0, 24.7; (minor diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.54 (m, 1H), 7.30-7.27 (m, 4H), 7.13-7.08 (t, *J* = 7.34 Hz, 1H), 6.99-6.76 (m, 7H), 6.64-6.61 (d, *J* = 8.44 Hz, 1H), 3.38-3.33 (t, *J* = 8.39 Hz, 1H), 3.15-3.10 (t, *J* = 8.71 Hz, 1H), 2.94-2.88 (t, *J* = 8.83 Hz, 1H), ¹³C NMR (75 MHz, CDCl₃) δ 144.0, 134.0, 132.7, 132.5,

132.1, 132.1, 131.7, 130.9, 130.6, 130.1, 130.1, 128.6, 127.9, 127.8, 127.8, 126.6, 124.9, 124.9, 124.4, 117.6, 117.6, 117.6, 24.5, 21.8, 19.9; IR (liquid) v 1637.27, 1630.52, 1530.24, 1493.60, 1464.67, 1378.85, 1260.25, 1145.51, 1088.62, 1012.45 cm⁻¹; HRMS (ESI) m/z calcd. for $C_{24}H_{17}CIN_2$ [*M*+]: 368.1080, found: 368.1084; The product major diastereomer was analyzed by HPLC to determine the enantiomeric excess: 94% *ee* (CHIRALPAK AD-H, hexane/i-PrOH = 70/30, flow rate: 0.5 mL/min, T = r.t, 254 nm), tR (minor) = 33.971 min, tR (major) = 53.081 min.; The product minor diastereomer was

analyzed by HPLC to determine the enantiomeric excess: 93% *ee* (CHIRALPAK AD-H, hexane/i-PrOH =70/30, flow rate: 0.5 mL/min, T = r.t, 254 nm), tR (minor) = 10.557 min, tR (major) = 18.305 min.

(8bS,9S,9aR)-3-phenyl-9-(o-tolyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7i):

H, Me N, N Ph Pale yellow oil (81%); d.r.: 1.6:1; (major diastereomer) ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.52 (dd, *J* = 7.51 Hz, 1.20 Hz, 2H), 7.45-7.28 (m, 6H), 7.24-7.19 (m, 3H), 7.14-7.09 (m, 1H), 7.07-7.03 (m, 2H), 6.97-6.91 (m, 1H), 3.25-3.20 (dd, *J* = 8.47 Hz, 4.51 Hz, 1H), 2.88-2.83 (dd, *J* = 8.47 Hz, 4.86 Hz, 1H), 2.42 (s, 3H), 1.98-1.95 (t, *J* 4.60 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 145.8, 138.1, 137.0, 133.6, 132.2, 131.0, 131.0, 130.0, 129.7, 129.4, 128.7, 128.2, 126.9, 126.7, 126.6, 126.1, 125.8, 125.1, 117.8, 28.0, 27.6, 22.4, 20.0; (minor diastereomer) ¹H NMR (300 MHz, CD₂Cl₂) δ 7.60-7.57 (dd, *J* = 7.60 Hz, 1.53 Hz, 1H), 7.30-7.30 (b, 4H), 7.11-6.93(m, 5H), 6.85-

6.74 (m, 2H), 6.66-6.64 (m, 1H), 6.52-6.49 (d, *J* = 7.66 Hz, 1H), 3.39-3.33 (t, *J* = 8.39 Hz, 1H), 3.20-3.14 (t, *J* = 8.72 Hz, 1H), 2.85-2.79 (t, *J* = 8.75 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.8, 139.2, 134.4, 132.7, 131.9, 130.8, 130.6, 130.4, 129.7, 129.7, 129.6, 128.5, 127.7, 126.7, 126.5, 126.4, 124.8, 124.8, 124.8, 124.7, 124.6, 124.6, 117.4, 117.4, 25.2, 21.8, 20.0, 19.7; IR (liquid) v 1630.52, 1589.06, 1530.24, 1492.63, 1463.71, 1378.85, 1262.18, 1145.51 cm⁻¹; HRMS (ESI) m/z calcd. for C₂₅H₂₀N₂ [*M*+]: 348.1626, found: 348.1626; The product major diastereomer was analyzed by HPLC to determine the enantiomeric excess: 97% *ee* (CHIRALPAK AD-H, hexane/i-PrOH = 30/70, flow rate: 0.7 mL/min, T = r.t, 254 nm), tR (minor) = 7.492 min, tR (major) = 16.941 min.; The product minor diastereomer was analyzed by HPLC to determine the enantiomeric excess: 96% *ee* (CHIRALPAK AD-H, hexane/i-PrOH = 30/70, flow rate: 0.7 mL/min, T = r.t, 254 nm), tR (major) = 6.993 min, tR (major) = 8.597 min.

4-(3-(trifluoromethyl)phenyl)-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2a]quinoline (8):

Pale yellow solid (93%); ¹H NMR (300 MHz, DMSO-*d*) δ 7.47-7.45 (m, 2H), 7.37-7.32 (m, 1H), 7.21-7.16 (m, 3H), 6.82-6.77 (t, *J* = 7.38 Hz, 1H), 6.62-6.57 (t, *J* = 7.23 Hz, 1H), 6.16-6.10 (m, 2H), 3.45-3.42 (m, 2H), 2.82-2.73 (t, *J* = 11.44 Hz, 1H), 2.04-1.97 (m, 1H), 1.86-1.81 (m, 1H), 1.39-1.35 (q, *J* = 4.49 Hz, 1H), 1.05-0.96 (m, 1H); HRMS (EI) m/z calcd. for C₂₀H₁₇F₃N₂ [*M*+]: 342.1344, found: 342.1344.

2-phenyl-4-(3-(trifluoromethyl)phenyl)-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (9):

Pale yellow solid (93%); m.p.180.4-194.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (s, 1H), 7.55-7.54 (m, 1H), 7.37-7.29 (m, 5H), 7.23-7.21 (d, *J* = 7.30 Hz, 1H), 7.03-7.00 (d, *J* = 8.42 Hz, 2H), 6.97-6.92 (t, *J* = 7.31 Hz, 1H), 6.87-6.82 (t, *J* = 7.70 Hz, 1H), 6.74-6.69 (t, *J* = 7.32 Hz, 1H), 6.33-6.30 (d, *J* = 8.06 Hz, 1H), 3.87-3.82 (m, 1H), 3.46-3.38 (t, *J* = 11.23 Hz, 1H), 2.10-2.03 (m, 1H), 1.81-1.74 (m, 1H), 1.63-1.58 (m, 1H), 1.14-1.07 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 145.0, 139.8, 138.8, 131.7, 131.2, 130.8, 130.4, 129.7, 129.4,

129.2, 128.2, 126.3, 126.3, 126.1, 126.0, 126.0, 122.5, 121.8, 121.8, 121.8, 121.7, 121.1, 120.6, 119.4, 118.9, 118.8, 118.7, 118.2, 115.5, 51.7, 49.7, 18.3, 14.3, 8.8; IR (liquid) v 1629.55, 1597.73, 1490.70, 1320.04, 1253.50, 1242.90, 1163.83, 1122.37 cm⁻¹; HRMS (EI) m/z calcd. for $C_{26}H_{21}F_3N_2$ [*M*+]: 418.1657, found: 418.1661.

IV . X-ray crystal data (4a and 7f)

Table 1. Crystal data and structure refinement for compound 4a.

Identification code	No1_sqd			
Empirical formula	$C_{26} H_{24} N_2 O_2 S$			
Formula weight	428.53			
Temperature	223(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 10.6565(7) Å	$\alpha = 69.374(3)^{\circ}$.		
	b = 11.1408(9) Å	$\beta = 76.912(3)^{\circ}$.		
	c = 12.3000(10) Å	$\gamma = 65.303(3)^{\circ}$.		
Volume	1236.26(17) Å ³			
Ζ	2			
Density (calculated)	1.151 Mg/m ³			
Absorption coefficient	0.154 mm ⁻¹			
F(000)	452			
Crystal size	0.220 x 0.150 x 0.080 mm ³			
Theta range for data collection	2.103 to 28.357°.			
Index ranges	-14<=h<=14, -14<=k<=	-14<=h<=14, -14<=k<=14, -16<=l<=16		
Reflections collected	35044			
Independent reflections	6146 [R(int) = 0.0722]	6146 [R(int) = 0.0722]		
Completeness to theta = 25.242°	100.0 %	100.0 %		
Absorption correction	Semi-empirical from ec	Semi-empirical from equivalents		
Max. and min. transmission	0.7457 and 0.5829	0.7457 and 0.5829		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²		
Data / restraints / parameters	6146 / 0 / 281	6146 / 0 / 281		
Goodness-of-fit on F ²	1.077			
Final R indices [I>2sigma(I)]	R1 = 0.0504, wR2 = 0.	R1 = 0.0504, WR2 = 0.1262		
R indices (all data)	R1 = 0.0782, wR2 = 0.	R1 = 0.0782, $wR2 = 0.1367$		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	0.316 and -0.255 e.Å ⁻³	0.316 and -0.255 e.Å ⁻³		

Compound 7f

Table 1. Crystal data and structure refinement for compound 6f.

Empirical formula	$C_{28}H_{26}N_2$		
Formula weight	390.51		
Temperature	223(2) K		
Wavelength	0.730 Å		
Crystal system	Orthorhombic		
Space group	$P2_{1}2_{1}2_{1}$		
Unit cell dimensions	a = 9.0720(18) Å	$\alpha = 90^{\circ}$	
	b = 9.846(2) Å	$\beta = 90^{\circ}$	
	c = 23.918(5) Å	$\gamma = 90^{\circ}$	
Volume	2136.4(7) Å ³		
Ζ	4		
Density (calculated)	1.214 Mg/m ³		
Absorption coefficient	0.073 mm ⁻¹		
F(000)	832		
Crystal size	0.092 x 0.078 x 0.032 mm ³		
Theta range for data collection	1.749 to 33.528°.		
Index ranges	-13<=h<=13, -14<=k<=14, -33<=l<=33		
Reflections collected	22591		
Independent reflections	6930 [R(int) = 0.0826]		
Completeness to theta = 25.976°	100.0 %		
Absorption correction	Empirical		
Max. and min. transmission	1.000 and 0.963		
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F ²	
Data / restraints / parameters	6930 / 0 / 274		
Goodness-of-fit on F ²	1.154		
Final R indices [I>2sigma(I)]	R1 = 0.0588, wR2 = 0.1755		
R indices (all data)	R1 = 0.0643, wR2 = 0.1815		
Largest diff. peak and hole	0.409 and −0.333 e·Å ⁻	3	

V. Reference

S1. (a) D. J. Lee, H. S. Han, J. Shin and E. J. Yoo, *J. Am. Chem. Soc.*, 2014, **136**, 11606; (b) J. Y.
Lee, J. Y. Shim, H. K. Kim, D. Ko, M.-H. Baik and E. J. Yoo, *J. Org. Chem.*, 2017, **82**, 4352; (c) N. De,
C. E. Song, D. H. Ryu and E. J. Yoo, *Chem. Commun.*, 2018, **54**, 6911.

S2. (a) F. G. Buono, M. C. Eriksson, B-S. Yang, S. R. Kapadia, H. Lee, J. Brazzillo, J. C. Lorenz, L.

Nummy, C. A. Busacca, N. Yee and C. Senanayake, Org. Process Res. Dev., 2014, 18, 1527; (b) J.

Forrester, R. V. H. Jones, L. Newton and P. N. Preston, Tetrahedron, 2001, 57, 2871.

S3. I. Stahl, S. Schomburg and H. O. Kalinowski, Chem. Ber., 1984, 117, 2247.

VI. Copies of Spectral Data of Compounds Obtained in this Study 3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3a) :

9a-methyl-3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3b):

3,9a-diphenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3c):

7-methyl-3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3d):

7-methoxy-3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3e):

3-(p-tolyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3f):

3-(4-methoxyphenyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3g):

3-(3-methoxyphenyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3h):

3,9-diphenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (3i):

ethyl 3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline-9-carboxylate (3j):

phenyl(3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinolin-9-yl)methanone (3k):

4-methoxyphenyl)(3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinolin-9-yl)methanone (3l):

4-nitrophenyl)(3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinolin-9-yl)methanone (3m):

10a-methyl-4-phenyl-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4b):

8-methyl-4-phenyl-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4c):

8-methoxy-4-phenyl-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4d):

4-(3-fluorophenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4e):

4-(3-methoxyphenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4f):

4-(3-fluorophenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinolone (4g):

2-tosyl-4-(3-(trifluoromethyl)phenyl)-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4h):

4-(p-tolyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4i):

4-(4-methoxyphenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-

4-(4-(tert-butyl)phenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-

4-(4-bromophenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinolone

2-tosyl-4-(4-(trifluoromethyl)phenyl)-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-

4-(3,5-difluorophenyl)-2-tosyl-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-

4-(3,5-bis(trifluoromethyl)phenyl)-2-tosyl-1,2,9b,10,10a,10b-

hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (4o):

4-phenyl-2-(phenylsulfonyl)-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-

a]quinolone (4p):

1-phenyl-3-tosyl-4,4a-dihydro-3H-pyrazino[1,2-a]quinoline (5):

(8bS,9S,9aR)-3,9-diphenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7a):

(8bS,9S,9aR)-7-methoxy-3,9-diphenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7c):

(8bS,9S,9aR)-9-phenyl-3-(m-tolyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7d):

(8bS,9S,9aR)-3-(4-(tert-butyl)phenyl)-9-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7f):

(8bS,9S,9aR)-3-phenyl-9-(4-(trifluoromethyl)phenyl)-9,9a-dihydro-8bHcyclopropa[c]imidazo[1,2-a]quinoline (7g):

(8bS,9S,9aR)-9-(4-chlorophenyl)-3-phenyl-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7h):

(8bS,9S,9aR)-3-phenyl-9-(o-tolyl)-9,9a-dihydro-8bH-cyclopropa[c]imidazo[1,2-a]quinoline (7i):

2-phenyl-4-(3-(trifluoromethyl)phenyl)-1,2,9b,10,10a,10b-hexahydrocyclopropa[c]pyrazino[1,2-a]quinoline (9):

VII. HPLC of products

7a major diastereomer

2 29.729 BB

Totals :

0.8447 953.61121

DAD1 B, Sig=254,4 Ref=off (Agilent\Checkout 2019-03-07 18-33-40\003-P2-F3-JYL-769-MeCN.D) mAU 530 2500 2000 1500 1000 500 29.729 0 30 25 Peak RetTime Type Width Height Area Area # [min] [mAU*s] % [mAU] 1 9.530 BV R 0.2269 4.12200e4 2813.56543 97.7388

16.89080

4.21736e4 2830.45623

2.2612

7a minor diastereomer

7b major diastereomer

Ph

Me

7b minor diastereomer

74

Ph

Ph

7c major diastereomer

DAD1 B, Sig=254,4 Ref=off (YEJ\2019-05-08JYL-806-6-OMe(10%).D) mAU 700 -600 500 400 300 200 100 696 0 10 Peak RetTime Type Width Height Area Area # [min] [mAU*s] [mAU] % 1 23.208 BB 0.6022 2.97540e4 767.61761 97.9137 2 27.969 BB 0.6944 633.99249 13.94585 2.0863 Totals : 3.03880e4 781.56346

7c minor diastereomer

Ph

7d major diastereomer

7d minor diastereomer

Ph

Ph

7e major diastereomer

Totals :

7.60394e4 3515.53490

7e minor diastereomer

H. Ph N N MeO

7f major diastereomer

7f minor diastereomer

H. Ph N N Bu

7g

7h major diastereomer

7h minor diastereomer

85

C

F

P٢

7i major diastereomer

Totals :

1.00001e5 1659.12120

7i minor diastereomer

H. Me N N Ph

Peak RetTime Type Width

993

Area

[min] [min] [mAU*s] [mAU] %
----|-----|-----|------|------|
1 6.993 BV 0.4992 852.22192 26.35856 2.1669
2 8.597 VB 0.3656 3.84761e4 1488.43445 97.8331

10

Height

Area

18

200

0