Electronic Supplementary Information (ESI) for

Synthesis of unsymmetrically substituted triarylamines *via* acceptorless dehydrogenative aromatization using a Pd/C and *p*-toluenesulfonic acid hybrid relay catalyst

Satoshi Takayama,^a Takafumi Yatabe,^a Yu Koizumi,^a Xiongjie Jin,^b Kyoko Nozaki,^b Noritaka Mizuno^a and Kazuya Yamaguchi*^a

^aDepartment of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: kyama@appchem.t.u-tokyo.ac.jp; Fax: +81-3-5841-7220 ^bDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Table of Contents

 TEM images and particle size distributions (Fig. S1) 	page S1
 Pd contents and average particle sizes (Table S1) 	page S2
• Effect of solvents (Table S2)	page S2
• Effect of temperatures (Table S3)	page S2
 Effect of removal of Pd/C (verification of heterogeneous catalysis) (Fig. S2) 	page S3
• Reuse test (Fig. S3)	page S3
Data of substrates	pages S4
Data of triarylamines	pages S4–S8
Additional references	page S8
NMR spectra	pages S9–S22

Catalyst	Pd content (mmol g ⁻¹)	Average particle size (nm)
Pd/C	0.226	2.70
Pd/TiO ₂	0.222	2.34
Pd/Al_2O_3	0.227	2.65
Pd/CeO ₂	0.209	2.10
Pd/LDH	0.234	3.60

 Table S1
 Pd contents and average particle sizes

Table S2Effect of solvents^a

H 1a	+0.	Pd/C, TsOH Solvent (2 mL) Ar (1 atm), 160°C, 2 h	Et 3a E		он 5а
Entry	Salvant	Yield (%)			
Entry	Solvent	3 a	4 a	5a	
1	Mesitylene	85	<1	<1	
2	Decane	72	<1	<1	
3	Diglyme	68	<1	<1	
4	DMA	11	<1	2	
5	NMP	5	<1	5	

^aReaction conditions: Pd/C (Pd: 2 mol%), TsOH (10 mol%), **1a** (0.5 mmol), **2a** (0.5 mmol), solvent (2 mL), Ar (1 atm), 160°C, 2 h. Yields were determined by GC analysis using *n*-hexadecane as an internal standard.

H N 1a	+	Pd/C, TsOH mesitylene (2 mL) Ar (1 atm), T °C, 2 h	Et 3a Et		он 5а
Entre	T [90]	Yield (%)			
Entry	Temperature [°C]	3a	4 a	5a	
1	160	85	<1	<1	
2	150	64	<1	1	
3	140	21	<1	1	
4	130	7	<1	1	

Table S3 Effect of temperatures^{*a*}

^aReaction conditions: Pd/C (Pd: 2 mol%), TsOH (10 mol%), **1a** (0.5 mmol), **2a** (0.5 mmol), mesitylene (2 mL), Ar (1 atm), 2 h. Yields were determined by GC analysis using *n*-hexadecane as an internal standard.

Fig. S2 Effect of removal of Pd/C (verification of heterogeneous catalysis). Reaction conditions: Pd/C (Pd: 2 mol%), TsOH (10 mol%), **1a** (0.5 mmol), **2a** (0.5 mmol), mesitylene (2 mL), 160°C, Ar (1 atm). Yields were determined by GC analysis using *n*-hexadecane as an internal standard. The arrow indicates the removal of Pd/C by hot filtration.

Fig. S3 Reuse test. Reaction conditions: Pd/C (Pd: 2 mol%), TsOH (10 mol%), **1a** (0.5 mmol), **2a** (0.5 mmol), mesitylene (2 mL), 160°C, Ar (1 atm). Yields were determined by GC analysis using *n*-hexadecane as an internal standard.

Data of substrates

N-cyclohexyldiphenylamine (4b) (CAS No. 4705-13-9): Isolated as yellow powders (Eluent: hexane/toluene= 1/1, $R_f = 0.75$). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.42–7.23 (m, 4H), 6.99–6.95 (m, 2H), 6.84–6.81 (m, 4H), 3.82 (tt, J = 11.6, 3.4 Hz, 1H, CH), 2.03–2.00 (m, 2H), 1.80–1.76 (m, 2H), 1.63–1.60 (m, 1H), 1.43–1.34 (m, 2H), 1.15–1.07 (m, 2H), 1.04–0.95 (m, 1H). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 146.3, 129.1, 122.7,

121.4, 56.6, 31.7, 26.2, 25.7. MS (70 eV, EI): *m/z* (%): 252 (11), 251 (52) [*M*⁺], 209 (17), 208 (100), 194 (8), 193 (6), 182 (5), 169 (21), 168 (14), 167 (12), 104 (13), 91 (8), 77 (17), 55 (8), 51 (6).

N-(1-cyclohexenyl)diphenylamine (9b): Isolated as colorless crystals (Eluent: hexane/toluene = 95/5, R_f = 0.56). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.20–7.16 (m, 4H), 7.04–7.02 (m, 4H), 6.91–6.88 (m, 2H), 5.50 (m, 2H), 2.11 (m, 4H), 1.72–1.62 (m, 4H). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 147.3, 143.1, 128.8, 122.5, 122.0, 121.3, 27.8, 25.0, 23.2, 22.3. MS (70 eV, EI): *m/z* (%): 250 (16), 249 (89) [*M*⁺], 248 (100), 221 (8), 220

(31), 206 (19), 204 (6), 168 (6), 167 (12), 158 (6), 157 (8), 131 (6), 130 (55), 129 (8), 128 (5), 119 (36), 118 (14), 117 (17), 115 (9), 104 (9), 103 (6), 91 (13), 78 (6), 77 (54), 65 (5), 51 (19).

N,N-dicyclohexylaniline: (CAS No. 63302-13-6): Isolated as colorless crystals (Eluent: hexane/toluene = 9/1, R_f = 0.04). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.22–7.12 (m, 2H), 6.98–6.90 (m, 2H), 6.84–6.75 (m, 1H), 3.29–3.18 (m, 2H), 1.79–1.43 (m, 14H), 1.37–1.06 (m, 6H). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 148.5, 128.2, 121.1, 119.0, 57.5, 31.9, 26.3, 26.0. MS (70 eV, EI): *m/z* (%): 258 (7), 257 (35) [*M*⁺], 215 (16), 214 (100), 175 (6),

174 (6), 133 (9), 132 (81), 130 (8), 120 (7), 119 (63), 118 (14), 117 (8), 106 (8), 104 (16), 91 (7), 83 (5), 77 (22), 55 (28).

Data of triarylamines

N-(4-ethylphenyl)-3-methyl-*N*-phenylaniline (3a): 85% GC yield, 70% isolated yield (Fig. 3). Isolated as colorless crystals (Eluent: hexane/toluene = 19/1, R_f = 0.27). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.20–7.17 (m, 2H, Ar), 7.10–7.04 (m, 5H, Ar), 7.01–6.99 (m, 2H, Ar), 6.95–6.92 (m, 1H, Ar), 6.90 (s, 1H, Ar), 6.87–6.85 (m, 1H,

Ar), 6.79–6.77 (m, 1H, Ar), 2.59 (q, J = 7.6 Hz, 2H, CH₂), 1.22 (t, J = 7.6 Hz, 3H, CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 148.1, 147.9, 145.4, 138.9, 138.8, 129.0, 128.9. 128.6, 124.7, 124.5, 123.5, 123.2, 122.0, 121.1, 28.2, 21.4, 15.5. MS (70 eV, EI): m/z (%): 288 (20), 287 (89) [M^+], 273 (23), 272 (100), 258 (6), 257 (5), 256 (7), 180 (8), 167 (6), 154 (6), 153 (6), 128 (7), 127 (5), 115 (5), 91 (6), 77 (10), 65 (6), 51 (5). Anal. Calc. for C₂₁H₂₁N: C, 87.76; H, 7.37; N, 4.87. Found: C, 87.84; H, 7.61; N, 4.76.

3-methyl-*N***-phenyl-***N***-(***m***-tolyl) aniline (3b)** (CAS No. 13511-11-0)^{S1}: 80% GC yield, 70% isolated yield (Fig. 3). Isolated as white powder (Eluent: hexane/toluene = 23/2, R_f

= 0.43). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.22–7.19 (m, 2H, Ar), 7.12–7.09 (m, 2H, Ar), 7.06–7.05 (m, 2H, Ar), 6.98–6.94 (m, 1H, Ar), 6.90 (s, 2H, Ar), 6.88–6.86 (m, 2H, Ar), 6.82–6.80 (m, 2H, Ar), 2.24 (s, 6H, CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 148.0, 147.8, 139.0, 129.1, 128.9, 124.9, 123.9, 123.5, 122.3, 121.4, 21.4. These NMR spectral data accord with those previously reported.^{S1} MS (70 eV, EI): *m/z* (%): 274 (22), 273 (100) [*M*⁺], 272 (19), 258 (12), 257 (22), 256 (6), 243 (5), 180 (10), 167 (7), 166 (5), 155 (5), 136 (5), 128 (7), 127 (5), 115 (6), 91 (6), 77 (9), 65 (9), 51 (5).

2-methyl-N-phenyl-N-(*m***-tolyl) aniline (3c)** (CAS No. 1648726-23-1): 79% GC yield, 62% isolated yield (Fig. 4). Isolated as colorless crystals (Eluent: hexane/toluene = 97/3, $R_{\rm f} = 0.43$). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.22–7.04 (m, 7H, Ar), 6.95–6.93 (m, 2H, Ar), 6.89–6.86 (m, 1H, Ar), 6.80–6.71 (m, 3H, Ar), 2.21 (s, 3H, CH₃), 2.03 (s, 3H, CH₃). ¹³C {¹H} NMR (125MHz, CDCl₃, TMS): δ 147.6, 147.4, 145.4, 138.7, 136.4, 131.6, 129.6, 128.9, 128.8, 127.3, 125.8, 122.3, 122.2, 121.4, 121.1, 118.9, 21.5, 18.6. MS (70 eV, EI): *m/z* (%): 274 (21), 273 (100) [*M*⁺], 272 (12), 258 (16), 257 (8), 256 (7), 243 (9), 196 (7), 194 (5), 182 (11), 181 (8), 180 (26), 167 (10), 166 (7), 165 (6), 137 (5), 136 (6), 128 (6), 115 (5), 91 (6), 77 (10), 65 (10), 51(7).

 $N-(4-(tert-butyl) phenyl)-3-methyl-N-phenylaniline (3d): 73\% GC yield, 76\% isolated yield. Isolated as colorless crystals (Eluent: hexane/toluene = 19/1, <math>R_f$ = 0.35). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.24–7.18 (m, 4H, Ar), 7.11–7.08 (m, 1H, Ar), 7.06–7.05 (m, 2H, Ar), 7.00–6.99 (m, 2H, Ar), 6.96–6.93 (m, 1H, Ar), 6.91 (s, 1H, Ar), 6.87–6.86 (m, 1H, Ar), 6.80–6.78 (m, 1H, Ar), 2.23 (s, 3H, CH₃), 1.30 (s, 9H, *t*-Bu). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 148.1, 147.9, 145.5, 145.1, 138.9, 129.0, 128.9, 126.0, 124.6, 123.8, 123.7, 123.3, 122.1, 121.2, 34.2, 31.4, 21.4. MS (70 eV, EI): m/z (%): 316 (14), 315 (52) [M^+], 301 (24), 300 (100), 285 (10), 167 (12), 150 (5), 136 (6), 135 (5), 128 (13), 77 (6). Anal. Calc. for C₂₃H₂₅N: C, 87.57; H, 7.99; N, 4.44. Found: C, 87.17; H, 7.92; N, 4.28.

3-methyl-*N*, *N***-diphenylaniline (3e)** (CAS No. 4316-54-5)^{S2}: 78% GC yield, 66% isolated yield (Fig. 3). Isolated as white powder (Eluent: hexane/toluene =19/1, R_f = 0.36). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.23–7.20 (m, 4H, Ar), 7.13–7.10 (m, 1H, Ar), 7.07–7.06 (m, 4H), 6.99–6.96 (m, 2H, Ar), 6.91 (s, 1H, Ar), 6.89–6.87 (m, 1H, Ar), 6.83–6.81 (m, 1H, 4r), 6.83–6.81 (m, 2H, 4r), 6.83–6.81 (m, 2H,

Ar), 2.24 (s, 3H, CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): *δ* 147.9, 147.7, 139.0, 129.1, 129.0, 125.0, 124.0, 123.7, 122.5, 121.5, 21.4. These NMR spectral data accord with those previously reported.^{S2} MS (70 eV, EI): *m/z* (%): 260 (21), 259 (100) [*M*⁺], 258 (25), 244 (12), 243 (21), 242 (5), 180 (7), 167 (14), 166 (11), 141 (8), 129 (5), 128 (7), 115 (8), 77 (14), 65 (7), 51 (11).

N-**phenyl**-*N*-(*m*-**tolyl**) **naphthalen-2-amine (3f)**: 84% GC yield, 84% isolated yield (Fig. 3). Isolated as colorless crystals (Eluent: hexane/toluene = 19/1, $R_f = 0.34$). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.72–7.70 (m, 1H, Ar), 7.68–7.66 (m, 1H, Ar),

7.55–7.53 (m, 1H, Ar), 7.41–7.40 (m, 1H, Ar), 7.36–7.21 (m, 5H, Ar), 7.14–7.10 (m, 3H, Ar), 7.01–6.98 (m, 1H, Ar), 6.95 (s, 1H, Ar), 6.93–6.92 (m, 1H, Ar), 6.85–6.83 (m, 1H, Ar), 2.24 (s, 3H, CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 147.9, 147.7, 145.6, 139.1, 134.4, 129.9, 129.2, 128.7, 127.5, 126.9, 126.2, 125.2, 125.1, 124.3, 123.8, 122.8, 122.6, 121.8, 121.6, 120.0, 21.4. MS (70 eV, EI): *m/z* (%): 310 (25), 309 (100) [*M*⁺], 308 (22), 294 (7), 293 (11), 217 (9), 216 (7), 192 (6), 191 (8), 155 (6), 146 (5), 115 (5), 77 (5). Anal. Calc. for C₂₃H₁₉N·0.3 H₂O: C, 87.75; H, 6.28; N, 4.45. Found: C, 87.87; H, 6.41; N, 4.48.

N-(4-methoxyphenyl)-3-methyl-*N*-phenylaniline (3g) (CAS No. 1648726-90-2): 86% GC yield, 74% isolated yield (Fig. 4). Isolated as colorless crystals (Eluent: hexane/toluene = 4/1, R_f = 0.33). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.18–7.15 (m, 2H, Ar), 7.09–7.00 (m, 5H, Ar), 6.92–6.74 (m, 6H, Ar), 3.76 (s, 3H, CH₃ methoxy),

2.22 (s, 3H, CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 156.0, 148.2, 148.0, 140.8, 138.8, 129.0, 128.8, 127.2, 123.6, 122.8, 122.7, 121.6, 120.2, 114.6, 55.3, 21.4. MS (70 eV, EI): *m/z* (%): 290 (23), 289 (100) [*M*⁺], 275 (21), 274 (93), 230 (6), 145 (6), 128 (9), 91 (5), 77 (7), 65 (5).

N-(4-(phenyl (*m*-tolyl) amino) phenyl) acetamide (3h): 31% GC yield, 32% isolated yield (Fig. 3). Isolated as white powder (Eluent: hexane/EtOAc = 2/3, R_f = 0.37). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.61 (s, 1H, NH), 7.38–7.35 (m, 2H, Ar), 7.22–7.19 (m, 2H, Ar), 7.12–7.09 (m, 1H, Ar), 7.03–7.01 (m, 4H, Ar), 6.98–6.95 (m, 1H, Ar), 6.87–6.80 (m, 3H, Ar), 2.23 (s, 3H, CH₃), 2.14 (s, 3H, CH₃ amide).

¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 168.4 (CO), 147.8, 147.6, 144.2, 139.0, 132.8, 129.1, 129.0, 124.8, 124.5, 123.6, 123.5, 122.3, 121.2, 121.1, 24.3, 21.4. MS (70 eV, EI): *m/z* (%): 317 (24), 316 (100) [*M*⁺], 275 (15), 274 (52), 273 (59), 182 (5), 181 (5), 167 (5), 129 (6), 128 (9), 91 (5), 77 (7), 65 (6). Anal. Calc. for C₂₁H₂₀N₂O·0.7 H₂O: C, 76.66; H, 6.56; N, 8.51. Found: C, 76.42; H, 6.14; N, 8.42.

ethyl 4-(phenyl (*m*-tolyl) amino) benzoate (3i) (CAS No. 1344716-76-2)^{S3}: 54% GC yield, 58% isolated yield (Fig. 3). Isolated as colorless crystals (Eluent: hexane/toluene =1/4, R_f = 0.39). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.88–7.87 (m, 2H, Ar), 7.32–7.29 (m, 2H, Ar), 7.21–7.18 (m, 1H, Ar), 7.16–7.10 (m, 3H, Ar), 7.00–6.94 (m, 5H, Ar), 4.33 (q, *J* = 7.2 Hz, 2H, CH₂), 2.29 (s, 3H, CH₃), 1.36 (t, *J*

= 7.2 Hz, 3H, CH₃), ¹³C {¹H} NMR (125MHz, CDCl₃, TMS): δ 166.4 (CO), 152.0, 146.7, 146.6, 139.4, 130.7, 129.4, 129.3, 126.4, 125.6, 125.3, 124.2, 123.0, 122.3, 120.0, 60.4, 21.2, 14.4. MS (70 eV, EI): *m/z* (%): 332 (24), 331(100) [*M*⁺], 304 (9), 303 (42), 302 (5), 286 (18), 259 (5), 258 (15), 257 (9), 256 (7), 244 (5), 243 (16), 242 (8), 241 (6), 180 (5), 167 (9), 166 (8), 143 (6), 115 (5), 77 (7), 65 (6).

4-ethyl-*N*, *N***-diphenylaniline (3j)** (CAS No. 36809-22-0)^{S4}: 67% GC yield, 63% isolated yield (Fig. 3). Isolated as colorless crystals (Eluent: hexane/toluene =19/1, R_f = 0.39). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.22–7.18 (m, 4H, Ar), 7.08–7.00 (m, 8H,

Ar), 6.96–6.93 (m, 2H, Ar), 2.60 (q, J = 7.6 Hz, 2H, CH₂), 1.22 (t, J = 7.6 Hz, 3H, CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 148.0, 145.4, 139.0, 129.1, 128.6, 124.8, 123.6, 122.2, 28.2, 15.5. These NMR spectral data accord with those previously reported.^{S4} MS (70 eV, EI): m/z (%): 324 (27), 323 (100) [M^+], 309 (19), 308 (74), 294 (9), 293 (7), 292 (5), 230 (7), 217 (8), 216 (7), 136 (5), 77 (6).

N-(4-ethylphenyl)-*N*-phenylnaphthalen-2-amine (3k): 73% GC yield, 76% isolated yield (Fig. 3). Isolated as colorless crystals (Eluent: hexane/toluene =19/1, $R_{\rm f}$ = 0.32). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.70–7.69 (m, 1H, Ar), 7.66–7.64 (m, 1H, Ar), 7.53–7.52 (m, 1H, Ar), 7.39–7.39 (m, 1H, Ar), 7.34–7.19 (m, 5H, Ar),

7.15–7.04 (m, 6H, Ar), 6.99–6.96 (m, 1H, Ar), 2.60 (q, J = 7.6 Hz, 2H, CH₂), 1.23 (t, J = 7.6 Hz, 3H, CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 147.9, 145.6, 145.3, 139.2, 134.4, 129.8, 129.2, 128.7, 127.5, 126.8, 126.2, 124.9, 124.2, 124.2, 123.9, 122.5, 119.5, 28.2, 15.5. MS (70 eV, EI): m/z (%): 324 (27), 323 (100) [M^+], 322 (5), 309 (17), 308 (69), 294 (7), 293 (6), 230 (5), 217 (6), 127 (5), 115 (5), 77 (6). Anal. Calc. for C₂₄H₂₁N·0.3 H₂O: C, 87.86; H, 6.62; N, 4.26. Found: C, 87.76; H, 6.48; N, 4.29.

N-(4-ethylphenyl)-*N*-phenylnaphthalen-1-amine (31): 62% GC yield, 62% isolated yield. Isolated as colorless crystals (Eluent: hexane/toluene =19/1, R_f = 0.34). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.95–7.94 (m, 1H, Ar), 7.85–7.83 (m, 1H, Ar), 7.72–7.71 (m, 1H, Ar), 7.43–7.39 (m, 2H, Ar), 7.33–7.29 (m, 2H, Ar), 7.15–7.12 (m, 2H, Ar),

7.02–6.94 (m, 6H, Ar), 6.87–6.84 (m, 1H, Ar), 2.56 (q, J = 7.6 Hz, 2H, CH₂), 1.19 (t, J = 7.6 Hz, 3H, CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 148.8, 146.0, 143.7, 137.9, 135.2, 131.3, 128.9, 128.5, 128.3, 127.1, 126.3, 126.24, 126.18, 126.0, 124.3, 122.5, 121.0, 120.9, 28.1, 15.5. MS (70 eV, EI): m/z (%): 324 (27), 323 (100) [M^+], 309 (19), 308 (74), 294 (9), 293 (7), 292 (5), 230 (7), 217 (8), 216 (7), 136 (5), 77 (6). Anal. Calc. for C₂₄H₂₁N: C, 89.12; H, 6.54; N, 4.33. Found: C, 89.15; H, 6.51; N, 4.22.

*N*⁴,*N*⁴'-diphenyl-*N*⁴,*N*⁴'-di-*m*-tolyl-[1,1'-biphenyl]-4,4'-diamine (TPD) (3m) (CAS No. 65181-78-4)^{S5}: 51% isolated yield. Isolated as colorless crystals (Eluent: hexane/toluene = 60/40, $R_{\rm f}$ = 0.49). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.40–7.39 (m, 4H, Ar), 7.21–7.18 (m, 4H, Ar), 7.14–7.07 (m, 10H, Ar), 6.97–6.89 (m, 6H, Ar), 6.81–6.80 (m, 2H, Ar), 2.22 (s, 6H,

CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 147.7, 147.6, 146.7, 139.0, 134.5, 129.1, 129.0, 127.2, 125.0, 124.1, 124.0, 123.8, 122.6, 121.6, 21.4. These NMR spectral data accord with those previously reported.^{S5}

4-ethyl-N-(4-fluorophenyl)-*N*-**phenylaniline (3n)**: 63% GC yield. Isolated as colorless crystals (Eluent: hexane/toluene = 19/1, $R_f = 0.52$). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.26–7.20 (m, 3H, Ar), 7.09–6.92 (m, 10H, Ar), 2.61 (q, J = 7.6 Hz, 2H, CH₂), 1.23 (t, J = 7.6 Hz, 3H, CH₃). ¹³C{¹H} NMR (125MHz, CDCl₃, TMS): δ 158.7 (d, J = 242 Hz, Ar), 148.1, 145.4, 144.1, 138.9, 129.1, 128.7, 126.0 (d, J = 8.4 Hz, Ar), 124.2, 122.9,

122.0, 115.9 (d, J = 22.8 Hz, Ar), 28.2, 15.5. MS (70 eV, EI): m/z (%): 292 (17), 291 (78) [M^+], 277 (22), 276 (100), 185 (5), 77 (8), 51 (5). Anal. Calc. for C₁₈H₂₁FN: C, 82.45; H, 6.23; F, 6.52; N, 4.81. Found: C, 82.26; H, 6.45; N, 4.46.

Additional references

- S1 X. Tao, L. Li, Y. Zhou, X. Qian, M. Zhao, L. Cai and X. Xie, Chin. J. Chem., 2017, 35, 1749.
- S2 Y. Hirai and Y. Uozumi, Chem. Commun., 2010, 46, 1103.
- S3 M. Kurt, S. Okur, S. Demic, J. Karpagam and N. Sunderganes, J. Raman Spectrosc., 2011, 42, 1682.
- S4 A. Tsubouchi, D. Muramatsu and T. Takeda, Angew. Chem. Int. Ed., 2013, 52, 12719.
- S5 D. S. Surry and S. L. Buchwald, J. Am. Chem. Soc., 2007, 129, 10354.

