Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

## **Supporting Information for**

## Numerical Monte Carlo Simulations of Charge Transport across the Surface of Dye and Cocatalyst Modified Spherical Nanoparticles under Conditions of Pulsed or Continuous Illumination

Kevin Tkaczibson<sup>1</sup> and Shane Ardo<sup>1,2,3</sup>

<sup>1</sup>Department of Materials Science & Engineering, <sup>2</sup>Department of Chemistry, <sup>3</sup>Department of Chemical & Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2025 USA



**Figure S1**. Simulated assignment of photoexcited dyes based on the Beer–Lambert law as a function of particle number/depth at the indicated excitation fluences and repeated a total of 50,000 times per condition.

| Name                                                                                 | Value(s)                                                                                |    |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----|--|
| $	au_{ m hop(Dye-Dye)}$                                                              | 40, 80, 160, 400, 800, 1600, 4000, 8000, 16000, 40000,<br>80000, 160000, 400000, 800000 | ns |  |
| $	au_{ m hop(Cat-Cat)}$                                                              | $	au_{ m hop-DyetoDye}$                                                                 |    |  |
| $	au_{ m hop(Dye-Cat)}$                                                              | $	au_{ m hop-DyetoDye}$ / 27                                                            |    |  |
| $	au_{ m hop(Cat-Dye)}$                                                              | $	au_{ m hop-DyetoDye} \ge 10^{13}$                                                     |    |  |
| $	au_{\text{recomb(SC-Dye)}}$ per particle                                           | 40, 80, 160, 400, 800, 1600, 4000, 8000, 16000, 40000,<br>80000, 160000, 400000, 800000 |    |  |
| $\tau_{\text{recomb}(\text{SC-Cat})}$ per particle                                   | $	au_{ m recomb}$ –SCtoDye                                                              |    |  |
| time step, $t_{\text{step}}$                                                         | Minimum[3.75 x $\tau_{hop-DyetoDye}$ , $\tau_{recomb-SCtoDye}$ ] / 350                  |    |  |
| number of trials per data point                                                      | 25                                                                                      |    |  |
| percent of incident light transmitted through the thin film                          | 43.4                                                                                    | %  |  |
| number of initially excited dyes per stack                                           | 10, 50, 100, 200, 400, 800, 2000, 4000, 8000, 16000                                     |    |  |
| number of particles in the stack                                                     | 100                                                                                     |    |  |
| number of molecular positions (points) per particle                                  | 252                                                                                     |    |  |
| percent surface coverage of molecules                                                | 100                                                                                     |    |  |
| maximum number of points adjacent to each molecule                                   | $6^{\dagger}$                                                                           | _  |  |
| maximum redox state of electrocatalysts                                              | 1, 2, 4                                                                                 |    |  |
| number of electrocatalysts per stack                                                 | 252                                                                                     | _  |  |
| number of electrocatalysts per particle <sup>††</sup>                                | 2                                                                                       | —  |  |
| number of initial photoexcitation events<br>per particle $(n_{pe})^{\dagger\dagger}$ | 1, 2, 4, 8, 20                                                                          | _  |  |

<sup>†</sup> in 12/252 cases, tessellation resulted in points that were pentagonally packed with only 5 adjacent points

<sup>††</sup> only used when absorption was homogeneous across the stack and did not follow the Beer–Lambert law



**Figure S2**. (a) Sheet plot representing the number of photoexcited dyes that ultimately *contribute to double oxidation/reduction of an electrocatalyst and turnover* when electrocatalysts are present at 1% surface coverage at the indicated initial pulsed-light excitation fluences. (b) Representation of the data in panel a as a function of the ratio of the recombination time constant to the hopping time constant using base-10 logarithmic scaling of the y-axis values so that lower fluence data can be seen more clearly.



**Figure S3**. (a) Sheet plot representing the percentage of photoexcited dyes that ultimately contribute to double oxidation/reduction of an electrocatalyst and turnover when *electrocatalysts* are present at exactly 2 per particle at the indicated initial pulsed-light excitation *fluences as a uniform distribution over the stack*. (b) Non-linear least squares sigmoidal best-fits of the data in panel a as a function of the ratio of the recombination time constant to the hopping time constant.



**Figure S4**. (a) Sheet plots representing the percentage of photoexcited dyes that ultimately *contribute to quadruple oxidation/reduction of an electrocatalyst and turnover* when electrocatalysts are present at 1% surface coverage at the indicated initial pulsed-light excitation fluences. (b) Non-linear least squares sigmoidal best-fits of the data in panel a as a function of the ratio of the recombination time constant to the hopping time constant.



**Figure S5**. Schematic detailing the process used to create a panoramic plot by tracing the perimeter of the parameter space covered by the sheet plot as 1, 2, 3, and 4, to allow for facile two-dimensional viewing for a wide range of parameters.



**Figure S6**. (a) Sheet plots – oriented like all other sheet plots – *representing the steady-state number of oxidized/reduced species when electrocatalysts require double oxidation/reduction for turnover* and are present at 1% surface coverage at the indicated continuous illumination solar-simulated fluences.



**Figure S7**. (a,b) Number of oxidized/reduced dyes remaining over time on the 100 particle stack after the indicated initial uniform pulsed-light excitation fluences, in the absence of electrocatalysts. (c) Number of oxidized/reduced species remaining over time on the 100 particle stack after the indicated initial uniform pulsed-light excitation fluences at the indicated uniform number of electrocatalysts per particle, in the absence of recombination. The y-axis in panel a is reciprocally scaled so that linear behavior indicates equal-concentration 2<sup>nd</sup>-order kinetic processes, while the y-axes in panels b and c are logarithmically scaled so that linear behavior indicates 1<sup>st</sup>-order kinetic processes. Kinetic parameters from best-fits of these data are shown in Table S2.

|                   |                                                | -                                              | -                                              |                                                 |
|-------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|
|                   | Recombination,                                 | Recombination,                                 | Turnover, initial                              | Turnover, initial                               |
|                   | # excitations                                  | # excitations                                  | (2 electrocatalysts                            | (3 electrocatalysts                             |
|                   | remaining > 100                                | remaining < 100                                | per particle)                                  | per particle)                                   |
|                   | (Figure S7a)                                   | (Figure S7b)                                   | (Figure S7c)                                   | (Figure S7c)                                    |
| kinetics          | equal-concentration<br>2 <sup>nd</sup> -order  | 1 <sup>st</sup> -order                         | 1 <sup>st</sup> -order                         | 1 <sup>st</sup> -order                          |
| $n_{\rm pe} = 1$  | —                                              | 1.23 x 10 <sup>-3</sup> timestep <sup>-1</sup> | 0 timestep <sup>-1</sup>                       | 0 timestep <sup>-1</sup>                        |
| $n_{\rm pe}=2$    | 3.32 x 10 <sup>-5</sup> timestep <sup>-1</sup> | 1.43 x 10 <sup>-3</sup> timestep <sup>-1</sup> | 5.46 x 10 <sup>-5</sup> timestep <sup>-1</sup> | 5.92 x 10 <sup>-5</sup> timestep <sup>-1</sup>  |
| $n_{\rm pe}=5$    | 3.15 x 10 <sup>-5</sup> timestep <sup>-1</sup> | 1.34 x 10 <sup>-3</sup> timestep <sup>-1</sup> | 1.52 x 10 <sup>-4</sup> timestep <sup>-1</sup> | 1.86 x 10 <sup>-4</sup> timestep <sup>-1</sup>  |
| $n_{\rm pe} = 10$ | 3.17 x 10 <sup>-5</sup> timestep <sup>-1</sup> | 1.38 x 10 <sup>-3</sup> timestep <sup>-1</sup> | 2.01 x 10 <sup>-4</sup> timestep <sup>-1</sup> | 2.80 x 10 <sup>-4</sup> timestep <sup>-1</sup>  |
| $n_{\rm pe} = 50$ | 3.11 x 10 <sup>-5</sup> timestep <sup>-1</sup> | 1.47 x 10 <sup>-3</sup> timestep <sup>-1</sup> | 2.44 x 10 <sup>-4</sup> timestep <sup>-1</sup> | $3.55 \text{ x } 10^{-4} \text{ timestep}^{-1}$ |
| moon              | $(319 \pm 9) \ge 10^{-7}$                      | $(137 \pm 9) \ge 10^{-5}$                      |                                                |                                                 |
| mean              | timestep <sup>-1</sup>                         | timestep <sup>-1</sup>                         | _                                              | _                                               |

Table S2. Best-fit rate constants from the linear regions of the data in Figure S7.