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Fig. S1 (a) SEM image of GCN. (b) SEM image of T-Nb2O5/GCN. (c) SEM image of T-

Nb2O5.
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Fig. S2 The Nb2O5 particle size distribution of T-Nb2O5/GCN, which is based on the 

measurement of 100 particles in their maximum dimension.
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Fig. S3 TG analysis of T-Nb2O5/GCN composite in air flow.



Fig. S4 (a) The survey spectra. (b) N 1s XPS spectra of T-Nb2O5/GCN. (c) C 1s XPS 

spectra of GCN before acid treatment. (d) C 1s XPS spectra of GCN after acid 

treatment. (e) O 1s spectra of GCN before acid treatment. (f) O 1s XPS spectra of GCN 

after acid treatment. (g) N 1s spectra of GCN before acid treatment. (h) N 1s XPS 

spectra of GCN after acid treatment.
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Fig. 
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CV 
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Galvanostaic charge-discharge profiles of T-Nb2O5 at 0.1 A g-1. (d) Galvanostaic 

charge-discharge profiles of GCN at 0.1 A g-1.
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Fig. S6  (a) CV curves of T-Nb2O5/GCN (50%) at 0.1 mV s-1. (b) Galvanostaic charge-

discharge profiles of T-Nb2O5/GCN (50%) at 0.1 A g-1. (c) Rate capacities at various 

current densities from 0.1 to 10 A g-1. (d) Cycling performance and the related 

coulombic efficiency for T-Nb2O5/GCN (50%) at 2 A g-1 for 500 cycles.
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Fig. S7 (a) Galvanostatic charge-discharge curves for T-Nb2O5/GCN electrode. (b) The 

T-Nb2O5/GCN electrode at a current density of 1 A g-1 for the mass loadings of 2, 5, 

and 10 mg cm-2.
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Fig. S8 Nyquist plots of GCN, T-Nb2O5 and T-Nb2O5/GCN electrodes (a) before 

cycling and (c) after 500 cycles. The used equivalent circuits for Nyquist plot 

simulation: (b) before cycling and (d) after 500 cycles.
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Fig. S9 (a) Typical charge and discharge curves of GCN cathode at 0.1 A g-1; (b) Rate 

capability of GCN at various current densities; (c) Cycling performance of the GCN 

cathode at 2 A g-1.
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Fig. S10 CV curves of Li-ion capacitors at various sweep rates with different anode to 

cathode mass ratios of (a) 1:1, (b) 1:2, (c) 1:3.

Table S1 Comparison with the performance of previously reported Li-ion capacitors.



Hybrid system
Voltage
Window

Energy Density/
Power Density

Cyclability Ref.

Nb2O5//GCN       
(Li+)

0-3.5 V

129 Wh kg-1 at 145.29 W kg-1 

50.6 Wh kg-1 at 16703.75 W kg-

1

80% after 10000 
cycles at 5A g-1

This 
work

CNT/Nb2O5//AC 
(Li+)

0.5-3 V
33.5Wh kg-1 at 83 W kg-1

~4 Wh kg-1 at 4000 W kg-1 - 1 

TiO2//CNT-AC
(Li+)

1-3 V
59.6 Wh kg-1 at 120 W kg-1

31.2 Wh kg-1 at 7000 W kg-1 - 2

PF16//FRGO
(Li+)

0-4.2 V
148.3 Wh kg-1 at 141W kg-1

71.5 Wh kg-1 at 7800W kg-1

68% after 2000 cycles 
at 1.86A g-1 

3

Nb2O5//AC
(Li+)

1-3.5 V
95.55 Wh kg-1 at 191 W kg-1

65/39 Wh kg-1at 5350.9 W kg-1 - 4

CNTS-
Nb2O5//AC
(Li+)

0.5-3 V
~50 Wh kg-1 at 86.46 W kg-1

14.77 Wh kg-1 at 6753.5 W kg-1 - 5

P-NbN//APDC
(Li+)

0-4 V
149 Wh kg-1 at 200 W kg-1

5 Wh kg-1 at 45000 W kg-1

~95% after 15000 
cycles at 1 A g-1

6

Ni-Co LDH/3D 
RGO NF//AC
(Li+)

0-1.6 V 38.6 Wh kg-1 at 69.48 W kg-1

3.65 W h kg-1at 7231.6 W kg-1

70% after 4000 cycles 
at 10 mA cm-2

7

SnO2–C//MC
(Li+)

0-4 V
110 Wh kg-1 at 90 W kg-1

45 Wh kg-1 at 2960 W kg-1
80% after 2000 cycles 
at 1 A g-1

8

AC//Li2CoPo4F
(Li+)

0-3 V
47 Wh kg-1 at 215 W kg-1

24 Wh kg-1 at 1607 W kg-1
92% after 30000 
cycles at 1.1A g-1 

9

T-Nb2O5 

/graphene//MC
(Li+)

0.8-3 V
48 Wh kg-1 at 690 W kg-1

13 Wh kg-1 at 16000 W kg-1
~92% after 3000 
cycles at 1A g-1 

10



Graphene 
wrapped 
LTO//AC
(Li+)

1-2.5 V
50 Wh kg-1 at ~15 W kg-1

15 Wh kg-1 at 2500 W kg-1
75% after 1000 cycles 
at 1mA cm-2

11

H2Ti11.85Nb0.15O2

5//AC 
(Li+)

0-2.8 V
24.3Wh kg-1 at1794.6 W kg-1

11.3Wh kg-1 at 5821.3W kg-1
84% after 10000 
cycles at 3A g-1

12

MnO/C//CNS
(Li+)

1-4 V
100 Wh kg-1 at 83 W kg-1

30 Wh kg-1 at 20000 W kg-1
70% after 5000 cycles 
at 5A g-1 

13

S-ATNT//OMC 
(Li+)

0-3 V
25 Wh kg-1 at 3000 W kg-1

42 Wh kg-1 at <300 W kg-1 - 14

MnO-C//AC
(Li+)

0-4 V
227 Wh kg-1 at ~60 W kg-1

~20 Wh kg-1 at 2952 W kg-1
92.5% after 3500 
cycles at 4 A g-1

15

GDY//AC
(Li+)

2-4 V
112.2 Wh kg-1 at 400.1 W kg-1

95.1 Wh kg-1 at 1000.4 W kg-1

94.7% after 1000 
cycles at 0.2A g-1 

16

TNO@C//CFS

(Li+)
0.8-3.2V 

110.4 Wh kg-1 at99.58 W kg-1 

20 Wh kg-1 at 5464 W kg-1
77% after 1500 cycles 
at 0.2A g-1 

17

Si/FG/C//CPA
C
(Li+)

2-4.5V 
159 Wh kg-1 at 945 W kg-1

99 Wh kg-1 at 31235 W kg-1
80% after 1000 cycles 
at 1A g-1  

18

Ti3C2Tx/CNTs//
AC
(Li+)

1-4 V
67 Wh kg-1 at 258 W kg-1

19 Wh kg-1 at 5297 W kg-1
81.3% after 5000 
cycles at 2A g-1 

19

m-Nb2O5-
C//MSP-20
(Li+)

0-3 V
20 Wh kg-1 at 12137 W kg-1

15 Wh kg-1 at 18510 W kg-1
90% after 1000 cycles 
at 1A g-1 

20

T-
Nb2O5@C//MSP
-20
(Li+)

1-3.5 V
63 Wh kg-1 at 70 W kg-1

5 Wh kg-1 at 16528 W kg-1
~80% after 1000 
cycles at 1A g-1

21

LTP//AC
(Li+)

0-3 V
14 Wh kg-1 at 45 W kg-1

0.8 Wh kg-1 at 180 W kg-1 - 22



PANI//LMB-NB
(Li+)

0-3 V
42 Wh kg-1 at1500 W kg-1

15 Wh kg-1 at5350 W kg-1
94% after 30000 
cycles at 2.25A g-1

23

Graphite//AC
(Li+)

1.5-4.5V 
103.8 Wh kg-1 at ~65 W kg-1 85% after 10000 

cycles at 0.12A g-1 
24

H2Ti6O3//CMK-
3
(Li+)

1-3.5 V
90 Wh kg-1 at ~600 W kg-1 80% after 1000 cycles 

at 0.15A g-1 
25

LiCrTiO4//AC
(Li+)

1-3V
23 Wh kg-1 at 800 W kg-1

~4.5Wh kg-1 at ~4000 W kg-1

~100% after 1000 
cycles at 2A g-1 

26
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Fig. S11 Ragone plot of T-Nb2O5/GCN//GCN Lithium ion capacitors in comparison 

with other commercial energy storage devices.
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Fig. S12 Electrochemical impendence spectra of LICs with various anode to cathode 

mass ratios of 1:1, 1:2 and 1:3, (a) before cycling and (b) after 10000 cycles. 
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