Supporting information for

Ultrahigh-surface-area nitrogen-doped hierarchically porous carbon materials derived from chitosan and betaine hydrochloride sustainable precursors for high-performance supercapacitors

Jian Cheng‡, Qinqin Xu‡, Xia Wang, Zaiquan Li, Fuzhong Wu,* Jiaojing Shao,

Haibo Xie*

Department of New Energy Science & Engineering,

The Key Laboratory of Metallurgical Engineering and Process Energy Saving,

College of Materials and Metallurgy, Guizhou University, Guiyang 550025,

P.R.China

Corresponding Authors: Email: <u>gutwfz@163.com; hbxie@gzu.edu.cn</u>

S1. Electrochemical measurements

The gravimetric (C_g , F g⁻¹) of a single electrode was calculated from the discharge curves according to the following equations(1-2)^[1-4]:

$$C_{g=}\frac{2I \Delta t}{m \Delta V} \tag{1}$$

where I (A) is the constant discharge current, Δt (s) is the discharge time, m (g) is the mass of the active material in a single electrode, ΔV (V) is the voltage change in discharge.

The gravimetric energy density (W_g , $Wh kg^{-1}$) and power density (P_g , $W kg^{-1}$) of the two-electrode symmetric supercapacitors were also calculated according to equation (2 – 3):

$$W_{g} = \frac{C_{g} \Delta V^{2}}{8x3.6}$$
(2)
$$P_{g} = \frac{3600 x W g}{\Delta t}$$
(3)

where C_g (F g⁻¹) represents the gravimetric specific capacitance of a single electrode obtained from equation (1), ΔV (V) is the voltage change in discharge, Δt (s) is the discharge time.

S2. SScheme & SFigures & STables

Figure S1. Comparative FT-IR spectra of Chitosan (C) and CBHP (C-B)

Figure S2. Thermogravimetric analysis (TGA) of chitosan: C and CBHP

Figure S3. TEM images of C-B-X-Y carbon materials: (a) C-B-800; (b)C-B-KOH-300; (c) C-B-KOH-400; (d) C-B-KOH-500; (e) C-B-K₂FeO₄-400; (f) C-B-KCl-800.

Figure S4. XPS survey spectra of (a) C-B-KOH-Y(300℃-500℃) and (b) C-B-X-Y.

Figure S5. Cyclic voltammetry at 20 mVs⁻¹ \sim 200 mVs⁻¹ and GCD curves at 0.5 Ag⁻¹ \sim 10Ag⁻¹ of C-B-KOH-Y (300°C \sim 500°C) in 6 molL⁻¹ KOH.

Figure S6. Cyclic voltammetry at 20 mVs⁻¹ \sim 200 mVs⁻¹ and GCD curves at 0.5 Ag⁻¹ \sim 10 Ag⁻¹ of C-B-X-Y in 6 molL⁻¹ KOH

Table S1 Adsorption parameters from N2 adsorption isotherms and electrochemical

Sample	BET surface area ^a (m ² g ⁻¹)	Total pore volume ^b (cm ³ g ⁻¹)	Micropore volume ^c (cm ³ g ⁻¹)	Most probable pore ^d diameter (nm)	Cg ^e (F g ⁻¹)
C-B-800	81	0.24	0.003	12.31	90
C-B-KOH-300	2780	1.35	0.61	1.9	302
С-В-КОН-400	3331	2.24	0.87	2.28	367
С-В-КОН-500	2438	1.22	0.81	1.77	260
C-B-KCl-800	510	0.82	0.39	3.48	168
C-B-K ₂ FeO ₄ -400	1815	0.99	0.47	2.18	253

performances of the as-prepared N-doped carbon material samples.

a: Surface area (BET) calculated using the BET method.

b: Total pore volume determined at a relative pressure (P/P_0) of 0.99.

c: Micropore volume calculated using the DFT model.

d: Pore size distribution is calculated by using the NLDFT method.

e: The C_g values calculated from discharge curves at a current density of 0.1 A $g^{-1}\,\text{in}$ 6 M KOH.

Materials	Activation Method	Activation Agent	S _{BET} (m ² g ⁻¹)	Refs	
Chitosan		КОН	3330	This work	
	Chemical	K ₂ FeO ₄	1815		
Chitosan	Chemical	K ₂ CO ₂	1013	[5]	
Chitosan	Chemical	КОН	2435	[6]	
Chitosan	Chemical	КОН	2616	[7]	
Chitosan	Chemical	ZnCl ₂	1582	[8]	
Chitosan	Chemical	$ZnCl_2$	1567	[9]	
Chitosan	Physical	CO_2	1054	[10]	
Chitosan	Chemical	ZnCl ₂	1785	[11]	
Chitosan	Chemical	Na ₂ CO ₃	440	[12]	
Chitosan	Chemical	Zn(NO ₃) ₂ ·6H ₂ O	1956	[13]	
Chitosan	Chemical	КОН	2169	[14]	
Chitosan	Chemical	КОН	2807	[15]	
Chitosan	Chemical	КОН	2397	[15]	
Starch	Chemical	КОН	2273	[16]	
Pumpkin	Chemical	КОН	2968	[17]	
Peanut shell	Chemical	КОН	2396	[18]	
Paulownia sawdust	Chemical	NaOH	1962	[19]	
Lignin	Chemical	КОН	2218	[20]	
Sawdust	Chemical	КОН	1850	[21]	
Glucose	Chemical	ZnCl ₂ +KCl	2160	[22]	
Wheat straw	Chemical	КОН	2316	[23]	
Cherry stones	Chemical	КОН	1273	[24]	
Waste news paper	Chemical	КОН	416	[25]	
Hemp bast fiber	Chemical	КОН	2287	[26]	
Spider silk	Chemical	ZnCl ₂	721	[27]	
Broussonetia	Chemical	КОН	1212	[28]	
papyrifera					
Neem dead leaves	Chemical	КОН	1230	[29]	
Black liquor	Chemical	КОН	2646	[30]	

Table S2 Comparison of the specific surface area $(S_{\text{BET}}$) performance in this work and other literatures

Materials	Capacitance (F/g)	Current density (A g ⁻¹)	Electrolyte	Max energy density (Wh/kg)	Max power density (w/kg)	Voltage Window(V)	Refs
Activated carbon	195	0.5	6 M KOH	10	1000	1	[31]
Mesoporous Carbon	227	0.2	6 M KOH			1	[32]
Hierarchical Porous Carbon	139	1	1 M LiPF ₆	37.9	700	2.8	[33]
hierarchical porous carbons	336	1	6 M KOH	72.7	1204	2.5	[34]
Hierarchically Porous Carbon	253	0.5	6 M KOH			1	[35]
Nano Porous Active Carbon	225	0.5	6 M KOH	7.8	250	1	[36]
Microporous Carbon	286.1	1	6 M KOH	53.6	1124.5	1.5	[37]
hierarchical porous carbon	309	0.5	1 M H2SO4	10.7	125	1	[38]
Biomass-Derived Carbon	225	0.5	NaClO ₄ in EC/DMC	70	375	3	[39]
Hollow carbon microtube	121	1	6 M KOH	35	750	1.5	[40]
Renewable Carbon	215	0.1	6 M KOH			0.8	[41]
Hierarchical Porous Carbons	217.7	1	ionic liquid BMIMBF ₄	92.6	879.6	3.5	[42]
Hierarchical porous carbon nanosheets	350	0.1	6 M KOH	12.2	25.0	1.5	[43]
Porous carbon nanosheets	275	0.5	6 M KOH	7.8	250	1	[44]
Microporous carbon nanocomposites	237	0.1	$3 \text{ M H}_2 \text{SO}_4$			0.9	[45]
Mesoporous carbons	312	1	6 M KOH	9.2	23	1	[46]
graphene nanosheets	201	0.05	$1 \text{ M H}_2 \text{SO}_4$	6.2	25	1	[47]

Table S3 Comparison of the supercapacitances performance in this work and other literatures

3. References

- [1]. Lang, J.-w., et al., Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J. Power Sources, 2012. **204**: p. 220-229.
- [2]. Sun, L., et al., From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater Chem. A, 2013. **1**(21): p. 6462-6470.

- [3]. Wang, G., et al., *Preparation and supercapacitance of CuO nanosheet arrays* grown on nickel foam. J. Power Sources, 2011. **196**(13): p. 5756-5760.
- [4]. Jha, N., et al., High Energy Density Supercapacitor Based on a Hybrid Carbon Nanotube–Reduced Graphite Oxide Architecture. ADV ENERGY MATER, 2012.
 2(4): p. 438-444.
- [5]. Zhang, F., et al., *Hierarchically porous carbon foams for electric double layer capacitors.* Nano Research, 2016. **9**(10): p. 2875-2888.
- [6]. Hao, P., et al., Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy, 2015. 15: p. 9-23.
- [7]. Hu, Y., et al., Preparation of Chitosan-Based Activated Carbon and Its Electrochemical Performance for EDLC. J ELECTROCHEM SOC, 2013. 160(6): p. H321-H326.
- [8]. Deng, X., et al., Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. CARBON, 2015. **93**: p. 48-58.
- [9]. Sun, L., et al., Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors. Chemsuschem, 2014. **7**(6): p. 1637-1646.
- [10]. Śliwak, A., et al., Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors. J.Appl Electrochem, 2016.
 46(6): p. 667-677.
- [11]. Deng, J., et al., *Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors.* GREEN CHEM, 2015. **17**(7): p. 4053-4060.
- [12]. Kucinska, A., A. Cyganiuk, and J.P. Lukaszewicz, A microporous and high surface area active carbon obtained by the heat-treatment of chitosan. Carbon, 2012. 50(8): p. 3098-3101.
- [13]. Jiang, Y., et al., Controllable synthesis and capacitive performance of nitrogendoped porous carbon from carboxymethyl chitosan by template carbonization method. J SOLID STATE ELECTR, 2015. 19(10): p. 3087-3096.
- [14]. Zhu, L., et al., High Performance Supercapacitor Electrode Materials from Chitosan via Hydrothermal Carbonization and Potassium Hydroxide Activation. ENERGY TECHNOL, 2017. 5.
- [15]. Lota, K., et al., The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors. Mater Lett, 2016. 173: p. 72-75.
- [16]. Wei, L., et al., Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High - Performance Supercapacitor Electrodes. Adv.Energy Mater, 2011. 1(3): p. 356-361.
- [17]. Bai, S., et al., Cover Picture: Pumpkin Derived Porous Carbon for Supercapacitors with High Performance (Chem. Asian J. 12/2016). CHEM-

ASIAN J, 2016. 11(12): p. 1828.

- [18]. Ding, J., et al., Peanut shell hybrid sodium ion capacitor with extreme energypower rivals lithium ion capacitors. ENERG ENVIRON SCI, 2015. 8(3): p. 941-955.
- [19]. Liu, X., et al., Microtube bundle carbon derived from Paulownia sawdust for hybrid supercapacitor electrodes. ACS APPL MATER INTER, 2013. 5(11): p. 4667-4677.
- [20]. Zhang, L., et al., Interconnected Hierarchical Porous Carbon from Lignin-Derived Byproducts of Bioethanol Production for Ultra-High Performance Supercapacitors. ACS Appl. Mat. Interfaces 2016. 8(22): p. 13918.
- [21]. Sevilla, M. and A.B. Fuertes, *Sustainable porous carbons with a superior performance for CO2 capture.* Energ Environ.SCI 2011. **4**(5): p. 1765-1771.
- [22]. Pampel, J., C. Denton, and T.P. Fellinger, *Glucose derived ionothermal carbons* with tailor-made porosity. Carbon, 2016. **107**: p. 288-296.
- [23]. Li, X., et al., Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. Micropor Mesopor Mat, 2010.
 131(1): p. 303-309.
- [24]. Olivares-Marín, M., et al., *Cherry stones as precursor of activated carbons for supercapacitors*. Mater Chem Phys, 2009. **114**(1): p. 323-327.
- [25]. Kalpana, D., et al., *Recycled waste paper—A new source of raw material for electric double-layer capacitors.* J. Power Sources, 2009. **190**(2): p. 587-591.
- [26]. Wang, H., et al., Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. Acs Nano, 2013. 7(6): p. 5131-5141.
- [27]. Zhou, L., et al., Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: A new application of spider silk. APPL CATAL B-ENVIRON 2016. **188**: p. 31-38.
- [28]. Wei, T., et al., Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim Acta, 2015. 169: p. 186-194.
- [29]. Biswal, M., et al., *From dead leaves to high energy density supercapacitors.* ENERG ENVIRON SCI, 2013. **6**(4): p. 1249-1259.
- [30]. Zhu, L., et al., Black liquor-derived porous carbons from rice straw for highperformance supercapacitors. Chem. Eng. J, 2017. **316**: p. 770-777.
- [31]. Gao, F., et al., Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochim Acta, 2016. 190: p. 1134-1141.
- [32]. Wei, J., et al., A Controllable Synthesis of Rich Nitrogen Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Adv.Funct Mater, 2013. 23(18): p. 2322-2328.
- [33]. Xie, L., et al., Hierarchical Porous Carbon Microtubes Derived from Willow Catkins for Supercapacitor Application. J. Mater Chem. A, 2015. 4(5): p. 1637-1646.

- [34]. Liu, Y., et al., Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J .Mater Chem. A, 2017. 5(25).
- [35]. Jiang, D., et al., Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem, 2015. 17(7): p. 4053-4060.
- [36]. Huang, Y., et al., *Biobased Nano Porous Active Carbon Fibers for High-Performance Supercapacitors*. ACS APPL MATER INTER, 2016. **8**(24): p. 15205-15215.
- [37]. Wu, C., et al., Activated Microporous Carbon Derived from Almond Shells for High Energy Density Asymmetric Supercapacitors. ACS Appl. Mat. Interfaces, 2016. 8(24): p. 15288.
- [38]. Wang, C., et al., Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance. J.Colloid Interf. Sci, 2018.
 523.
- [39]. Thangavel, R., et al., Engineering the Pores of Biomass Derived Carbon:

Insights for Achieving Ultrahigh Stability at High Power in High - Energy Supercapacitors. Chemsuschem, 2017. **10**(13).

[40]. Li, Q., et al., β - Ni(OH)2 nanosheet arrays grown on biomass - derived

hollow carbon microtube for high - performance asymmetric supercapacitor.

Chemelectrochem, 2018.

- [41]. Chun, H.H., et al., A Solvent-Free Synthesis of Lignin-Derived Renewable Carbon with Tunable Porosity for Supercapacitor Electrodes. ChemSusChem. **0**(ja).
- [42]. Jian, S., et al., Hierarchical Porous Carbons Derived from Renewable Poplar Anthers for High-Performance Supercapacitors. ChemElectroChem, 2018.
 5(11): p. 1451-1458.
- [43]. Dengfeng, Y., et al., Biowaste-Derived Hierarchical Porous Carbon Nanosheets for Ultrahigh Power Density Supercapacitors. ChemSusChem, 2018. 11(10): p. 1678-1685.
- [44]. Wei, T., et al., A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage. J.Power Sources, 2016. **331**: p. 373-381.
- [45]. Yao, Y., et al., Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes. ACS Appl. Mat. Interfaces 2015. **7**(8): p. 4817-4825.
- [46]. Sun, F., et al., High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J. Power Sources, 2017. 337: p. 189-196.
- [47]. Wen, L., et al., Multiple nanostructures based on anodized aluminium oxide

templates. Nat. Nanotechnol., 2016. 12: p. 244.