Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2019

Supporting information for:

## NH<sub>2</sub>-MIL-125 (Ti)/Pt/g-C<sub>3</sub>N<sub>4</sub> catalyst promoting visible-light photocatalytic H<sub>2</sub> production

Zhuizhui Su<sup>1,2</sup>, Bingxing Zhang<sup>1,2</sup>, Jinbiao Shi<sup>1,2</sup>, Dongxing Tan<sup>1,2</sup>, Fanyu Zhang<sup>1,2</sup>, Lifei Liu<sup>1,2</sup>, Xiuniang Tan<sup>1,2</sup>, Dan Shao<sup>1,2</sup>, Guanying Yang<sup>1,3</sup> and Jianling Zhang<sup>1,2,3</sup>,\*

<sup>1</sup>Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.

<sup>2</sup>School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P.R.China.

<sup>3</sup>Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, P.R.China.

\*E-mail: zhangjl@iccas.ac.cn



**Figure S1.** XRD patterns of NH<sub>2</sub>-MIL-125 (Ti)/Pt/g-C<sub>3</sub>N<sub>4</sub> composites prepared with a mass ratio of NH<sub>2</sub>-MIL-125 (Ti) to Pt/g-C<sub>3</sub>N<sub>4</sub> of 2:1 (a), 1:1 (b), 1:2 (c), 1:7 (d) and 1:9 (e).



Figure S2. TEM image of NH<sub>2</sub>-MIL-125 (Ti). Scale bar, 500 nm.



Figure S3. TEM image of Pt/g-C<sub>3</sub>N<sub>4</sub>. Scale bars, 200 nm.



**Figure S4.** Pore diameter distribution of NH<sub>2</sub>-MIL-125 (Ti)/Pt/g-C<sub>3</sub>N<sub>4</sub> composite prepared with a mass ratio of NH<sub>2</sub>-MIL-125(Ti) to Pt/g-C<sub>3</sub>N<sub>4</sub> of 1:5.



**Figure S5.** Wide-scan XPS spectra of NH<sub>2</sub>-MIL-125 (Ti) (a),  $Pt/g-C_3N_4$  (b) and NH<sub>2</sub>-MIL-125 (Ti)/Pt/g-C<sub>3</sub>N<sub>4</sub> composite prepared with a mass ratio of NH<sub>2</sub>-MIL-125(Ti) to  $Pt/g-C_3N_4$  of 1:5 (c).



**Figure S6.** XRD patterns of the pristine  $NH_2$ -MIL-125 (Ti)/Pt/g-C<sub>3</sub>N<sub>4</sub> composite prepared with a mass ratio of  $NH_2$ -MIL-125(Ti) to Pt/g-C<sub>3</sub>N<sub>4</sub> of 1:5 and the  $NH_2$ -MIL-125 (Ti)/Pt/g-C<sub>3</sub>N<sub>4</sub> photocatalyst after use.



**Figure S7.** UV–vis absorption spectra of  $Pt/g-C_3N_4$  (a) and  $NH_2$ -MIL-125 (Ti)/Pt/g-C<sub>3</sub>N<sub>4</sub> composite prepared with a mass ratio of  $NH_2$ -MIL-125(Ti) to  $Pt/g-C_3N_4$  of 1:5 (b).

| Photocatalytic systems                                               | Light source  | Sacrificia<br>l agent | H <sub>2</sub> evolution<br>(umol·g <sup>-1</sup> ·h <sup>-1</sup> ) | Ref.         |
|----------------------------------------------------------------------|---------------|-----------------------|----------------------------------------------------------------------|--------------|
| g-C <sub>3</sub> N <sub>4</sub> /NH <sub>2</sub> -MIL-125/Ni/Pd      | visible-light | TEOA                  | 8700                                                                 | <b>S</b> 1   |
| g-C <sub>3</sub> N <sub>4</sub> /Pt/GO                               | visible-light | TEOA                  | 3820                                                                 | S2           |
| Pt@MIL-125/Au                                                        | >380 nm       | TEOA                  | 1743                                                                 | S3           |
| TCPP1/Pt/g-C <sub>3</sub> N <sub>4</sub>                             | >380 nm       | TEOA                  | 1208                                                                 | S4           |
| g-C <sub>3</sub> N <sub>4</sub> /NH <sub>2</sub> -MIL-125            | >320 nm       | TEOA                  | 1123                                                                 | S5           |
| Pt@O-g-C <sub>3</sub> N <sub>4</sub>                                 | >420 nm       | TEOA                  | 732                                                                  | S6           |
| Pt/NH <sub>2</sub> -MIL-125                                          | >420 nm       | TEOA                  | 516                                                                  | S7           |
| Pt/NH <sub>2</sub> -MIL-125                                          | >420 nm       | TEOA                  | 333                                                                  | <b>S</b> 8   |
| Nax-C <sub>3</sub> N <sub>4</sub> /Pt@UiO-66                         | >380 nm       | TEA                   | 471                                                                  | S9           |
| NH <sub>2</sub> -MIL-125 (Ti)/Pt/g-<br>C <sub>3</sub> N <sub>4</sub> | >380 nm       | TEOA                  | 3986                                                                 | This<br>work |

**Table S1.** Comparison of NH<sub>2</sub>-MIL-125 (Ti)/Pt/g- $C_3N_4$  photocatalyst with other photocatalysts reported in literatures.

## References

- J. X. Xu, J. Y. Gao, C. Wang, Y. Yang and L. Wang, *Appl. Catal. B: Environ.*, 2017, 219, 101–108.
- 2 P. Wang, Z. J. Guan, Q. Y. Li and J. J. Yang, J. Mater. Sci., 2018, 53, 774–786.
- J. D. Xiao, L. L. Han, J. Luo, S. H. Yu and H. L. Jiang, *Angew. Chem., Int. Ed.*, 2017, 56, 1–6.
- 4 S. K. Mei, J. P. Gao, Y. Zhang, J. B. Yang, Y. L. Wu, X. X. Wang, R. R. Zhao, X. G. Zhai, C. Y. Hao, R. X. Li and J. Yan, *J. Colloid Interface Sci.*, 2017, **506**, 58–65.
- 5 G. Zhou, M. F. Wu, Q. J. Xing, F. Li, H. Liu, X. B. Luo, J. P. Zou, J. M. Luo and A. Q. Zhang, *Appl. Catal. B: Environ.*, 2018, **220**, 607–614.
- 6 Y. X. Zeng, X. Liu, C. B. Liu, L. L. Wang, Y. C. Xia, S. Q. Zhang, S. L. Luo and Y. Pei, *Appl. Catal. B: Environ.*, 2018, **224**, 1–9.
- T. Toyao, M. Saito, Y. Horiuchi, K. Mochizuki, M. Iwata, H. Higashimura and M. Matsuoka, *Catal. Sci. Technol.*, 2013, 3, 2092–2097.
- 8 Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo

and M. Matsuoka, J. Phys. Chem. C, 2012, 116, 20848–20853.

9 Y. T. Pan, D. D. Li, H. L. Jiang, *Chem. Eur. J.*, 2018, **24**, 18403–18407.