Supplementary Information

Highly Nanocrystalline Interconnected $La_{0.5}Ca_{0.5}CoO_{3-\delta}$ as an Efficient Bifunctional Electrocatalyst for Zinc-Air Battery with Structural and Morphological Evidence for ZnO Mitigation

Inthumathi Kanagaraj^{a,b}, Prabu Moni^{a,b},A. S. Prakash^{‡ a,b}

^aCSIR-Central Electrochemical Research Institute-Chennai Unit, CSIR Madras Complex, Taramani, Chennai 600113, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.

^{*}Corresponding author Email: prakash.as@gmail.com

Electronic supplementary Information (ESI) available: XRD, EDX, FE-SEM images of LCCO.

Synthesis of La_{0.5}Ca_{0.5}CoO₃₋₆ by solid state method (Bulk LCCO)

All chemicals La₂O₃, CaCO₃,and Co(CH₃COO)₂.4H₂O were procured from ACROS Organics and used without further purification. In a typical synthesis,0.4147 g of La₂O₃, 0.2548 g of CaCO₃ and 1.2681 g of Co(CH₃COO)₂.4H₂O were manually ground for 20 minutes using agate mortar and pestle. The ground mixture was pretreated at 400 °C for 2h then obtained powders were pressed into a pellet by applying hydraulic pressure (2 ton). The pellets were annealed at 1000 °C for 24 h in a box furnace at the heating rate of 5 °C min⁻¹. Finally, the sintered pellet was reground and used for further studies.

Fig. S1 (a) XRD pattern, (b) EDX profile (c-d) FE-SEM images of bulk LCCO

Fig. S2 (a) EDX profile and (b) XPS survey spectrum of the nano LCCO

Fig. S3 Comparison of $La_{0.5}Ca_{0.5}CoO_3X$ -ray diffraction pattern with parent $LaCoO_3$

Fig. S4 Elemental mapping of nano LCCO

Fig. S5 CV curves over time of stability testing (0.0–1.2 Vvs. RHE, O₂-saturated 0.1 M KOH solution) for nano LCCO

Fig. S6 ORR activity comparison of nano LCO vs nano LCCO

Fig. S7 XRD pattern and FE-SEM images of cathode at different time duration: 10 minutes / cycle (a,a') and 1 hour / cycle (b,b') respectively

Fig.S8 XRD pattern and FESEM images of anode at different time duration:(i) 10 minutes / cycle (a,a') and 1 hour / cycle (b,b') respectively

Table S1 Impedance parameters derived from experimental Nyquist plots of bulk, nano, and 5wt% conductive carbon mixed LCCO as cathode catalyst in a zinc-air battery setup

Material	R ₁ (Ohm)	R ₂ (Ohm)	R ₃ (Ohm)
Nano LCCO + 5 wt% C	1.0233	2658	4823.30
Nano LCCO	1.3649	2760	5568.73
Bulk LCCO	1.7665	3108	7417.92

Determination of Oxygen vacancy:

Quantitative evaluation of oxygen stoichiometry in the $La_{0.5}Ca_{0.5}CoO_3$ composition was performed similarly to the earlier reports using iodometric titration.¹ In a typical procedure, 10mg of the compound was dissolved in 6N HCl (5 ml) followed by addition of 5ml of 10% KI. Thus obtained green color solution was titrated against standardized 0.01 M Na₂S₂O₃. When the solution appeared as pale yellow in color, 3 drops of starch (1%) were added and the titration was continued till the disappearance of dark blue color. The volume of Na₂S₂O₃ consumed was recorded and the experiment was repeated to obtain concordant values. The amount of oxygen was calculated using the below-mentioned formula.¹

$$\delta = \frac{(4 - Y)m - Mn}{2m - 16n}; \text{ where } \mathbf{n} = \mathbf{C} \times \Delta \mathbf{V}$$

Hence we found that the $\delta = 0.29$ in La_{0.5}Ca_{0.5}CoO_{3- δ}

Reference:

 Shen, Q.; Li, S.; Yang, G.; Sunden, B.; Yuan, J. Effect of A-/B-site Doping on Oxygen Non-Stoichiometry, Structure characteristics, and O₂ Releasing Behavior of La_{1-x}Ca_xCo_{1-y}Fe_yO_{3-δ} Perovskites. *Energies* 2019, *12*, 410.