Supplementary Information for Impact of Perovskite Solar Cell Degradation on the Lifetime Energy Yield and Economic Viability in Perovskite/Silicon Tandem Modules

Jiadong Qian^a Marco Ernst^{a*}, Nandi Wu^a and Andrew Blakers^a

^a Research School of Engineering, the Australian National University, Canberra ACT 2600, Australia

Table S1 Electrical properties of two-terminal and four terminal PSK/Si solar cells and the module configuration used for simulation.

	Cell	Jsc (mA∙cm⁻²)	lsc (A)	Voc (V)	FF (-)	PCE (%)
	PSK	19.5	4.77	1.05	0.68	14.1
2T ¹	Si	19.5	4.77	0.73	0.79	11.2
	Tandem					25.3
	PSK	21.0	8.39	1.10	0.74	17.1
4T ²	Si	17.7	4.32	0.67	0.80	9.6
	Tandem					26.7

Simulation method

One-diode equation

$$J = J_{ph} - J_0 \left(e^{\frac{V + J \cdot R_s}{nV_T}} - 1 \right) - \frac{V + J \cdot R_s}{R_{sh}}$$

J is the cell current density, J_{ph} is the photo-generated current density, J_0 is the dark-saturation current, *V* is the voltage at the cell, R_s is the series resistance, *n* is the ideality factor at the p-n junction, V_T is $\frac{kT}{k}$

the thermal voltage calculated as q, where k is the Boltzmann constant, T is the cell temperature and q is the electron charge, R_{sh} is the shunt resistance.

Explicit solution to the one-diode equation using Lambert W function³

$$V = (J_{ph} + J_0) \cdot R_{sh} - J \cdot (R_s + R_{sh}) - nV_T W[\frac{R_{sh}J_0}{nV_T}e^{\frac{R_{sh}(J_{ph} + J_0 - J)}{nV_T}}]$$

$V_{\rm oc}$ degradation by degrading J_0

$$J_0^t = J_0^0 \cdot r_v$$

 r_v is a coefficient to adjust the open-circuit voltage.

FF degradation by increasing R_s

$$R_s^t = R_s^0 \cdot r_{FF}$$

 $r_{\rm FF}$ is a coefficient to adjust the fill factor.

Perovskite cell J_{sc} degradation

$$J_{ph(PSK)}^{t} = J_{ph(PSK)}^{0} (1 - tr_{c(PSK)})(1 - tr_{encp})$$

 $J_{ph(PSK)}$ is the photo-generated current at time *t* with a current degradation rate of $r_{c(PSK)}$ of the perovskite cell and annual optical degradation rate of r_{encp} for the encapsulation.

Silicon cell J_{sc} degradation

$$J_{ph(Si)}^{t} = J_{ph(Si)}^{0} (1 - tr_{c(Si)}) (1 - tr_{encp}) + f_{\tau} (J_{ph(PSK)}^{0} - J_{ph(PSK)}^{0} (1 - tr_{c(PSK)}))$$
(5)

 $J_{ph(Si)}^{t}$ is the photo-generated current at time t with a current degradation rate of $r_{c(Si)}$ of the perovskite cell and annual optical degradation rate of r_{encp} for the encapsulation. Coefficient f_{τ} represents the correlation between the current degradation at the perovskite top cell and the current increase at the silicon bottom cell due to increased light transmitted. The coefficient f_{τ} can be calculated as following.

$$f_{\tau} = \frac{\Delta J_{sc(PSK)}}{\int_{\lambda_{min}}^{\lambda_{max}} \Delta \phi(\lambda) \cdot EQE(\lambda) \cdot d\lambda}$$

 $\Delta J_{sc(PSK)}$ is the short-circuit current degradation in the perovskite top cell. $\Delta \phi(\lambda)$ is the photon flux increase at the silicon bottom cell due to the perovskite optical degradation. $EQE(\lambda)$ is the spectral external quantum efficiency of the silicon cell. $\Delta \phi(\lambda)$ can be calculated as:

$$\Delta \phi(\lambda) = \frac{\Delta T(\lambda) \cdot G_{AM1.5g}(\lambda)}{E(\lambda)}$$

 $\Delta T(\lambda)$ is the transmittance change of the perovskite cell during degradation, and is measured for a sample cell $G_{AM1.5g}(\lambda)$ is the AM 1.5g spectral irradiance and $E(\lambda)$ is the photon energy, which equals $h \cdot c$

to $\overline{\lambda}$, where *h* is Planck's constant and *c* is the speed of light.

Table S2 Simulated degradation rates for encapsulation, Si cell and PSK cell.

	Degradation rate (%/year)				
Parameter	Encapsulation	Si cell	PSK cell		
			S1	S2	S 3
I _{sc}	0.3	0			
FF	0	0.09			
V _{oc}	0	0.03			
P _{mp}	N/A	0.3	0-4.7	0-4.5	0-3.5

Figure S1 Figure of merit of the perovskite solar cell used for extracting the realistic degradation scenario.

Figure S2 Tandem module power degradation impacted by varying PSK top cell degradation rate over 25 years in Scenario 1, with f_{τ} = 0 and 1.

Figure S3 Tandem module power degradation impacted by varying PSK top cell degradation rate over 25 years in Scenario 2, with f_{τ} = 0 and 1.

Figure S4 Tandem module power degradation impacted by varying PSK top cell degradation rate over 25 years in S2, with f_{τ} equals to 0 and 1.

Figure S5 Ratios between the lifetime energy yield of the 2T and 4T tandem modules in S1, S2 and S3 and the projected lifetime energy yield of a 405 W mono c-Si PERC module in 2025. The encapsulation and Si cells in tandem modules and the 2025 PERC modules are assumed to degradation be 0.4%/year. A future energy discount rate of 5%/ year and constant f_{τ} = 0.89 is used.

Table S3 Cost components used to simulate the LCOE of PSK/Si tandem modules and the mono c-Si PERC module in 2025.4

		Unit Cost	PERC module in 2025	PSK/Si tandem module		
Additional cost of tandem processing				0	C _{PSK}	
Module power				405	P _{tandem}	
Category		Sub-category	Cost (\$/W)	Cost (\$/module)	Cost (\$/module)	
	Capital Cost			•		
Module type Soft cost		0.25	101			
dependent cost	System cost					
	Module	encapsulation	0.096	39		
		Si cell	0.057	23		
		Si wafer	0.047	19		
		Si material	0.06	24		
		total	0.26	104	104+ ^C <i>PSK</i>	
	Inverter		0.05	20	$0.05 \times P_{tandem}$	
	Wiring		0.12	50		
Module type	Mounting		0.091	37		
independent cost	Ground		0.050	20		
	O&M cost per year		0.0065	2.6		
Total O&M cost over 25 years		0.23	92			
Total Cost (\$)			1.05	425	$405 + 0.05 \times P_{tandem} + C_{PSK}$	

Table S4 Latitude and annual solar insolation in Perth in comparison with other cities in the world⁵.

City	Latitude	Annual Solar Insolation (kWh·m ²)
Perth, Australia	31.953° S	2133
Los Angeles, US	34.054° N	2239
Denver, US	39.739° N	1940
Mexico City, Mexico	19.433° N	2187
Berlin, Germany	52.5200° N	1284
Paris, France	48.857° N	1369
Qinghai, China	36.000° N	1921
Singapore, Singapore	1.290° N	1735
Riyadh, Saudi Arabia	24.632° N	2494
New Delhi, India	28.614° N	2139

Figure S6 Simulated permissible C_{PSK} for 2T and 4T tandem modules in the three degradation scenarios (S1, S2 and S3) to breakeven with the mono c-Si PERC module in 2025. The encapsulation and Si cells in tandem modules and the 2025 PERC modules are assumed to degradation be 0.4% per year. A future energy discount rate of 5%/ year and a fixed f_{τ} value of 0.89 is used.

Reference

- F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen and C. Ballif, *Nat. Mater.*, 17, 820–826.
- C. O. R. Quiroz, Y. Shen, M. Salvador, K. Forberich, N. Schrenker, G. D. Spyropoulos, T. Heumüller, B. Wilkinson, T. Kirchartz, E. Spiecker, P. J. Verlinden, X. Zhang, M. A. Green, A. Ho-Baillie and C. J. Brabec, *J. Mater. Chem. A*, 2018, 6, 3583-3592.
- 3 A. Jain and A. Kapoor, Sol. Energy Mater Sol. Cells, 2004, 81, 269-277.
- 4 ITRPV working group International technology roadmap for photovoltaic (ITRPV) 2017 Results, Technical Report (March, 2018)
- 5 Photovoltaic Geographical Information System, http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#HR, accessed March 2019