Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI) for

Rationally Assembled rGO/Sn/Na₂Zr(PO₄)₂ Nanocomposites as High Performance Anode Materials for Lithium and Sodium Ion Batteries

Mei Ma, a,b Wenzhou Shen, b Jiali Zhang b and Shouwu Guo*b

^aSchool of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

^bDepartment of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

Correspondence should be addressed to: swguo@sjtu.edu.cn

Table S1 The ICP data of Sn contents in Sn/Na₂Zr(PO₄)₂ composites.

Composites	SnCl ₂ ·2H ₂ O/mmol	NaBH ₄ /mmol	(ICP) Sn/%
Sn/Na ₂ Zr(PO ₄) ₂ -a	1	5	21.35
$Sn/Na_2Zr(PO_4)_2$ -b	0.5	2.5	10.45
$Sn/Na_2Zr(PO_4)_2$ -c	1.5	7.5	29.39

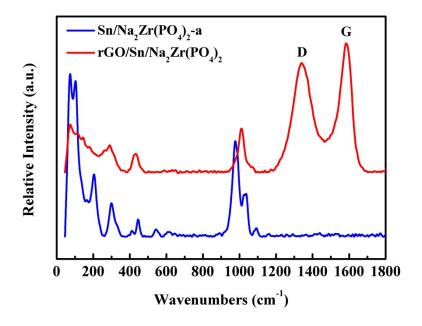


Fig. S1 Raman spectra of $Sn/Na_2Zr(PO_4)_2$ -a, and $rGO/Sn/Na_2Zr(PO_4)_2$ composites. The mass fraction of rGO in the $rGO/Sn/Na_2Zr(PO_4)_2$ is 4.5%.

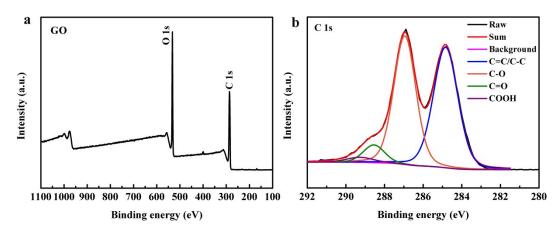
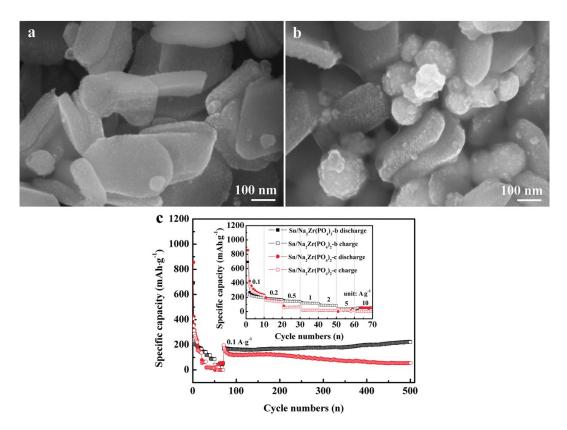
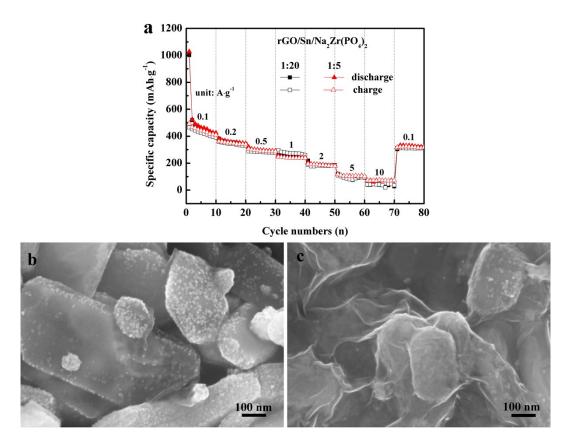
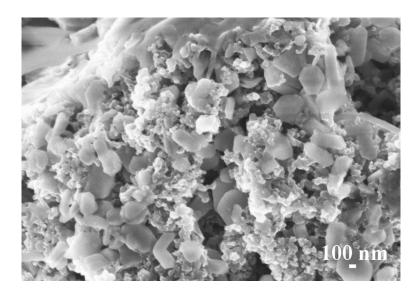
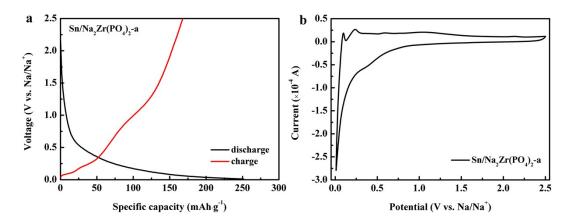


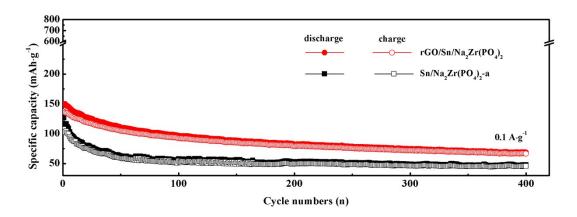
Fig. S2 XPS spectra of GO: (a) survey, (b) C 1s spectrum.


Fig. S3 SEM images of $Sn/Na_2Zr(PO_4)_2$ composites (a) $Sn/Na_2Zr(PO_4)_2$ -b, and (b) $Sn/Na_2Zr(PO_4)_2$ -c; (c) Galvanostatic charge/discharge curves of $Sn/Na_2Zr(PO_4)_2$ -b and $Sn/Na_2Zr(PO_4)_2$ -c as anodes for LIBs, measured at current densities from 0.1 A g⁻¹ to 10 A g⁻¹.

 $\textbf{Table S2} \ \ \text{The electric resistivity of Sn/Na}_2 Zr (PO_4)_2 \text{-a, and } rGO/Sn/Na}_2 Zr (PO_4)_2 \ composites.$


Samples (bare and dry powder)	Electric Resistivity/ Ω mm	
Sn/Na ₂ Zr(PO ₄) ₂ -a	1.41×10^7	
rGO/Sn/Na ₂ Zr(PO ₄) ₂	840	


Fig. S4 (a) Galvanostatic charge/discharge curves of $rGO/Sn/Na_2Zr(PO_4)_2$ composites with different GO to $Sn/[Na_2Zr(PO_4)_2 \cdot H_2O]$ ratios in weight, measured at current densities from 0.1 A g^{-1} to 10 A g^{-1} ; SEM images of (b) $rGO/Sn/Na_2Zr(PO_4)_2$ (1:20), and (c) $rGO/Sn/Na_2Zr(PO_4)_2$ (1:5) composite.

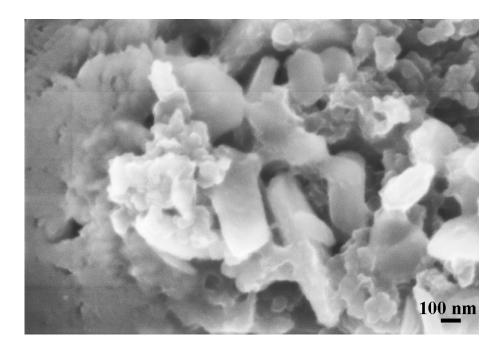

Fig. S5 SEM image of rGO/Sn/Na₂Zr(PO₄)₂ anode after 200 cycles at 0.1 A g⁻¹. (Note: After 200 charge/discharge cycles, coin half-cell with rGO/Sn/Na₂Zr(PO₄)₂ as anode was opened in an argon-filled glove box, and dimethyl carbonate (DMC) was used to wash away the residual LiPF₆ on the electrode surface. Afterwards, SEM was employed to analyze the morphology of the electrode material.)

Fig. S6 (a) Charge/discharge voltage profiles of $Sn/Na_2Zr(PO_4)_2$ -a at the second charge/discharge cycle measured at a current density of 0.1 A g⁻¹, and (b) the corresponding CV measured at a scanning rate of 0.5 mV s⁻¹.

 $\label{eq:Fig.S7} \textbf{Fig. S7} \ \text{Cycling performances of } Sn/Na_2Zr(PO_4)_2\text{-a and } rGO/Sn/Na_2Zr(PO_4)_2 \ \text{anodes, measured at}$ a current density of 0.1 A g-1.

Fig. S8 SEM image of rGO/Sn/Na₂Zr(PO₄)₂ anode for SIB after 400 charge/discharge cycles at 0.1 A g⁻¹. (Note: After 400 charge/discharge cycles, coin half-cell with rGO/Sn/Na₂Zr(PO₄)₂ as anode for SIB was opened in an argon-filled glove box, and dimethyl carbonate (DMC) was used to wash away the residual NaClO₄ on the electrode surface. Afterwards, SEM was employed to analyze the morphology of the electrode material.)