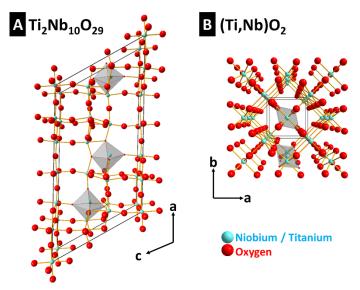
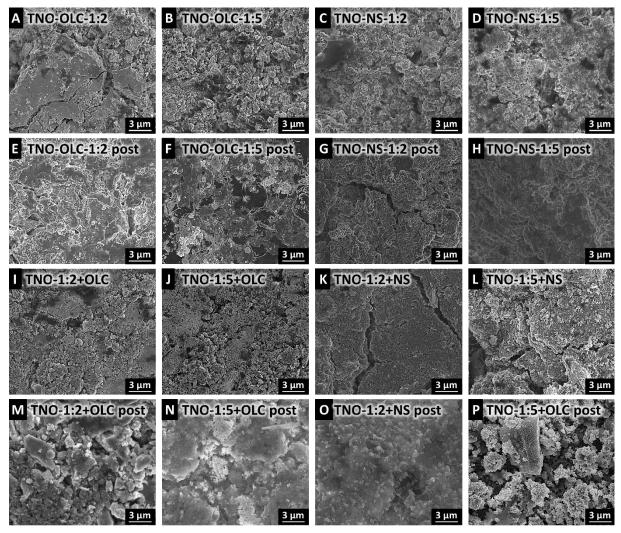
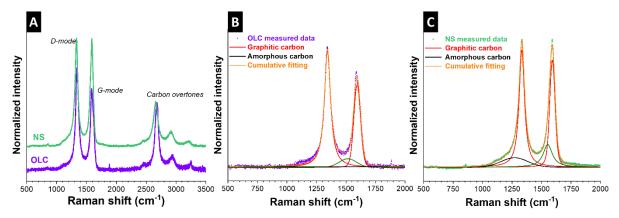
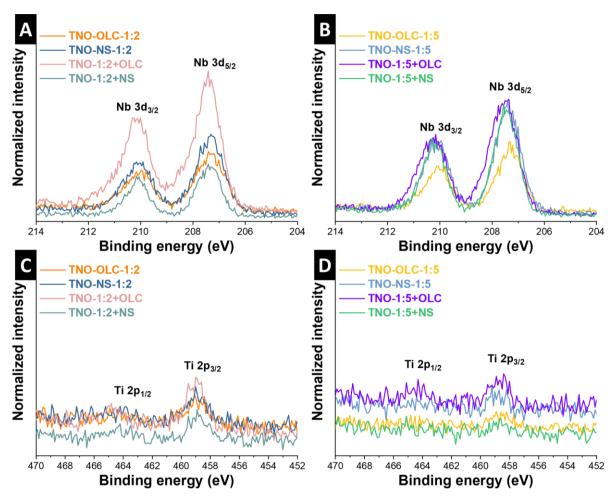

Supplementary Information


Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications

Hwirim Shim,^{1,2} Eunho Lim,¹ Simon Fleischmann,¹
Antje Quade,³ Aura Tolosa,¹ Volker Presser^{1,2,*}


- ¹ INM Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- ² Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
- Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany
- * Corresponding author's eMail: volker.presser@leibniz-inm.de


Fig. S1: Thermogravimetric analysis of samples under an air atmosphere for the characterization of the amount of carbon.


Fig. S2: Crystal structures of (A) Ti₂Nb₁₀O₂₉ (PDF 72-0159) and (B) rutile-type (Ti,Nb)O₂ (PDF 72-7371). Selected coordination octahedra of oxygen surrounding niobium / titanium are added for visualization purposes.

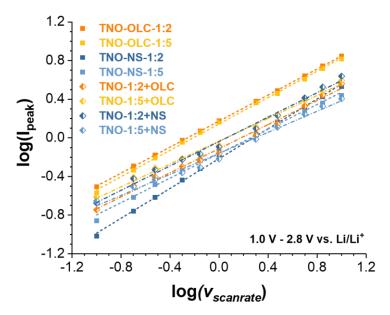

Fig. S3: Scanning electron micrographs of the hybrid and composite electrodes. The label "post" demarks samples that were investigated post-mortem, that is, after extended cycling.

Fig. S4: (A) Raman spectra of carbon onions and carbon nanohorns. D- and G-mode peak fitting for (B) carbon onions and (C) carbon nanohorns.

Fig. S5: The XPS spectra of (A-B) Nb 3d and (C-D) Ti 2p for TNO-C hybrid and TNO+C composite electrodes.

Fig. S6: Plot of log(*scan rate*) vs. log(*peak current*) of the lithiation (cathodic) in the potential range 1.0-2.8 V vs. Li/Li⁺ at scan rates of 0.1-2.0 mV/s and the linear fitting of each sample.

Fig. S7: The specific capacity of electrodes consisting of carbon onions (OLC) or carbon nanohorns (NS) obtained from galvanostatic charge/discharge cycling at different specific current for rate capability and their Coulombic efficiency between 1.0-2.8 V vs. Li/Li⁺.

Table S1: List of the samples and their synthesis conditions according to hybridized carbon substrates.

Carbon	Ti:Nb ratio	Synthesis	Sample
substrate	of precursor	atmosphere	name
Carbon onions	1:2	Argon	TNO-OLC-1:2
	1:5	Argon	TNO-OLC-1:5
Carbon nanohorns	1:2	Argon	TNO-NS-1:2
	1:5	Argon	TNO-NS-1:5
No carbon	1:2	Air	TNO-1:2
	1:5	Air	TNO-1:5