Electronic Supplementary Information

NiS-MoS₂ hetero-nanosheet arrays electrocatalysts for efficient overall water splitting

Shundong Guan,^{ab} Xiuli Fu,^{*a} Zhezhu Lao,^c Chuanhong Jin^c and Zhijian Peng^{*b}

^a State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China)

^b School of Science, China University of Geosciences, Beijing 100083, P.R. China

^c State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

*xiulifu@bupt.edu.cn. Tel: 86-10-62282242. Fax: 86-10-62282242.

*pengzhijian@cugb.edu.cn. Tel: 86-10-82320255; Fax: 86-10-82322624.

Financial support from the National Natural Science Foundation of China (grant nos. 11674035 and 61274015), and Excellent Ph.D. Students Foundation in Beijing University of Posts and Communications (grant no. CX2018214) is gratefully acknowledged.

Fig. S1 SEM images of NiS-MoS₂ nanostructures on CC synthesized with different concentrations of sodium dodecyl sulfate (SDS): (a) 0, (b) 0.1, (c) 0.2, and (d) $0.3 \text{ mol} \cdot \text{L}^{-1}$.

In order to investigate the function of SDS for the formation of NiS-MoS₂ HNSAs, different concentrations of SDS were used during the hydrothermal synthesis. Without SDS in the solution, some urchin-like nanostructures were formed independently on the CC (**Fig. S1a**), indicating that NiS and MoS₂ couldn't uniformly grow on the surface of CC due to the poor wettability of carbon in aqueous solution. Similarly, when a low concentration ($0.1 \text{ mol} \cdot L^{-1}$) of SDS was used, only some nanoparticles were formed, decorating on the CC (**Fig. S1b**). However, when $0.2 \text{ mol} \cdot L^{-1}$ SDS was applied, many large nanosheets were uniformly and vertically aligned as nanowalls on the CC (**Fig. S1c**). By further increasing the concentration of SDS to $0.3 \text{ mol} \cdot L^{-1}$, the formed nanosheets were aggregated together but had a smaller size (**Fig. S1d**). Thus, $0.2 \text{ mol} \cdot L^{-1}$ of SDS was optimized for the synthesis of NiS-MoS₂ HNSAs.

Shundong Guan, et al., Sustainable Energy & Fuels, Fig. S2

Fig. S2 SEM images of NiS-MoS₂ nanostructures on CC synthesized at 180 °C for different times: (a) 4, (b) 6, (c) 9 and (d) 12 h. The insets in (a) and (b) are their corresponding high-magnification SEM images, respectively.

As is seen in **Fig. S2a**, after 4 h hydrothermal reaction, many flower-like nanosheets have formed on the surface of CC. These tiny-flowers would continually grow larger and interconnect with each other with the extension of reaction time, and wall-like nanosheets with higher thickness appeared (**Fig. S2b**). After 9 h reaction, the optimized NiS-MoS₂ HNSAs with large size were obtained (**Fig. S2c**). By further extending the reaction time to 12 h, more of large-sized flower-like NiS-MoS₂ hierarchical nanostructures would separately grow onto the as-formed nanosheets array (**Fig. S2d**).

Fig. S3 SEM images of NiS-MoS₂ nanostructures on CC synthesized at different pH values: (a) 4.62 (adjusted by adding HCl), (b) 5.37 (pristine solution) and (c) 6.50 (adjusted by adding NaOH). (d) Their corresponding XRD patterns.

As shown in **Fig. S3a-b**, under acidic conditions, many cubic particles were formed. But under alkaline conditions, a plenty of vertically aligned nanosheets were obtained (**Fig. S3c**). From **Fig. S3d**, it can be seen that, as the reaction solution was changed from acid to nearly near-neutral, the phase of nickel sulfide would be transformed from cubic NiS₂ to hexagonal NiS, while that of MoS_2 would not be varied. These results reveal that a nearly neutral condition could facilitate the formation of hexagonal NiS nanosheets, but an acidic one could be beneficial for the formation of cubic NiS₂ nanoparticles.

Fig. S4 SEM images of NiS-MoS₂ nanostructures on CC synthesized with different Mo/Ni feed molar ratios: (a) 0.23, (b) 0.47, (c) 0.7, (d) 0.93 and (e) 1.4.

As is seen from Fig. S4, when a small Mo/Ni feed molar ratio (0.23-0.47) was applied for the growth of NiS- MoS_2 nanostructures, the coating of catalysts was neither complete nor uniform on the CC. However, when a large Mo/Ni feed molar ratio (0.93-1.4) was utilized, the structure became too dense and the size of nanosheets was reduced. Thus, a moderate Mo/Ni feed molar ratio of 0.7 was selected for the growth of uniform NiS- MoS_2 HNSAs.

Fig. S5 XRD patterns of the NiS-MoS₂ HNSAs/CC before and after annealing.

From Fig. S5, it can be seen that after a simple annealing at 500 °C in N₂ atmosphere, all the diffraction peaks of the prepared NiS-MoS₂ HNSAs/CC became sharper than those of the pristine sample, which are matching better with the standard XRD patterns of NiS (JCPDS no. 75-0613) and MoS₂ (JCPDS no. 65-0160). These results indicate that the crystallinity of NiS-MoS₂ HNSAs/CC could be improved after annealing.

Fig. S6 XRD patterns, and the corresponding SEM images of pure NiS (a, b) and pure MoS_2 (c, d) nanostructures on the CC.

As comparative samples for NiS-MoS₂ HNSAs, pure NiS and MoS₂ were also grown on CC *via* a similar process, respectively, and then annealed under the same conditions. **Fig. S6a** indicates that the obtained NiS nanostructures are of pure hexagonal NiS phase, and **Fig. S6b** reveals that many large nanoparticles with a diameter more than 3 μ m were aggregated together, wrapping the CC. These results confirm the robust growth of NiS in the absence of restrictive effect due to the growth of MoS₂. For the pure MoS₂ sample, all the diffraction peaks can be indexed to those of 2H MoS₂ phase, and the wide peaks indicate the relatively poor crystallinity of MoS₂ (**Fig. S6c**). Moreover, a layer of tiny nanosheets is uniformly coating the CC, revealing that the MoS₂ nanostructured sheets couldn't grow larger without the presence of NiS (**Fig. S6d**). Thus, the synthesis of the present NiS-MoS₂ HNSAs should be controlled by a collaborative growth process between NiS and MoS₂.

Fig. S7 EDX results. (a) Typical SEM image and the corresponding mapping spectra of S (b), Mo (c) and Ni (d) elements. (e) EDX spectrum of the NiS-MoS₂ HNSAs/CC, in which the inset is the table of element contents.

From Fig. S7, it can be seen that S, Mo and Ni elements are all existing over the whole surface of carbon fiber, indicating that NiS and MoS₂ are uniformly distributing on the carbon cloth (CC). It should be noted that, for the EDX spectrum, Au atoms originate from the sprayed gold during the preparation of SEM samples; and O atoms might be derived from the adsorbed O_2 or H_2O on the sample. In addition, the molar percentage of MoS₂ in the prepared NiS-MoS₂ heterostructures was calculated as about 29.1%.

Fig. S8 Polarization curves of NiS-MoS₂ nanostructures on CC synthesized at different pH values (a) and with different Mo/Ni feed molar ratios (b), respectively. Electrolyte: 1 mol·L⁻¹ KOH aqueous solution; and scan rate: 5 mV·s⁻¹.

From Fig. S8, it can be seen that, the NiS-MoS₂ nanostructures on CC synthesized under the optimal conditions (at pH = 6.50 and with a Mo/Ni feed molar ratio of 0.7) present the highest performance for hydrogen evolution reaction (HER).

Fig. S9 Polarization curves of NiS-MoS₂ nanostructures on CC synthesized with and without SDS. Electrolyte: 1 mol·L⁻¹ KOH aqueous solution; and scan rate: $5 \text{ mV} \cdot \text{s}^{-1}$.

It is seen that the NiS-MoS₂/CC composite synthesized without SDS shows a much higher overpotential for HER than the heterostructures fabricated with 0.2 mol·L⁻¹ SDS, probably because without the assistance of SDS, the NiS and MoS₂ couldn't effectively and uniformly grown on to the CC substrate. As a result, the product couldn't provide enough electrochemical active species for efficient HER.

Fig. S10 Polarization curves of the present NiS-MoS₂ HNSAs/CC in 1 mol·L⁻¹ KOH aqueous solution with and without *iR* correction.

From the polarization curve without iR correction, it can be calculated that the overpotentials at a current density of -10 and -250 mA·cm⁻¹ are about 135 and 860 mV, respectively. After the iR correction, the cathodic current goes up sharply with the increase of applied potential, and the overpotentials at the current density of -10 and -250 mA·cm⁻¹ are dramatically decreased to 106 and 200 mV, respectively.

Fig. S11 Cyclic voltammograms of (a) NiS NPs/CC, (b) MoS_2 NSs/CC and (c) NiS-MoS_2 HNSAs/CC in a potential range near the HER. Electrolyte: 1 mol·L⁻¹ KOH aqueous solution.

In order to estimate the HER-related electrochemical active surface area (EASA) of NiS NPs/CC, MoS₂ NSs/CC and NiS-MoS₂ HNSAs/CC, the CV curves were swept at a potential range of no faradic processes in different scan rates. The current densities at the average potential $(\Delta j/2 = (j_a - j_c)/2)$ in the selected range were plotted as a function of the scan rate, and the slope of the linear fit could be calculated as the C_{dl} . From Fig. S11, it is seen that the NiS-MoS₂ HNSAs/CC shows larger j_a and j_c values than the NiS NPs/CC and MoS₂ NSs/CC, implying that the NiS-MoS₂ HNSAs/CC possesses the largest C_{dl} value and thus the largest EASA.

Fig. S12 Polarization curves of the NiS NPs/CC, MoS₂ NSs/CC and NiS-MoS₂ HNSAs/CC after normalizing the current by the corresponding EASA.

The specific HER activity of the samples could be estimated by normalizing the current by the corresponding EASA. From **Fig. S12**, it can be seen that the NiS-MoS₂ HNSAs/CC exhibits the lowest overpotential for HER among these three samples, indicating its highest intrinsic HER activity. Interestingly, being different from the polarization curves shown in Fig. 4a, the NiS NPs/CC shows better performance for HER than the MoS₂ NSs/CC after normalization. This result suggests that there would be much more active sites on the NiS NPs/CC as compared to those on the MoS₂ NSs/CC with the same EASA, which might be owing to the fact that the active sites of MoS₂ only exist in its edge domain.

Fig. S13 Tafel plots of the NiS-MoS₂ HNSAs/CC before and after 1,000 CV scans for HER.

From this figure, it is seen that after 1,000 CV scans for HER, the Tafel slope of the NiS-MoS₂ HNSAs/CC almost equals to that of the initial scan, indicating that the mechanism for HER is not changed during 1,000 cycles, implying that the composition of the NiS-MoS₂ HNSAs/CC presents no change after this cycling test. Therefore, the slight increase of the overpotential for HER might be caused by the structure failure of the catalysts.

Fig. S14 Microstructure after HER test. (a) Low- and (b) high-magnification SEM images of NiS-MoS₂ HNSAs/CC after 24 h electrocatalytic HER. Electrolyte: 1 mol·L⁻¹ KOH aqueous solution; and current density: - $10 \text{ mA} \cdot \text{cm}^{-2}$.

It can be seen from **Fig. S14** that after a long-term electrocatalytic HER test (24 h), there are no significant changes in morphology for the present NiS-MoS₂ HNSAs/CC.

Fig. S15 CV curves of the NiS-MoS₂ nanostructures on CC synthesized at different pH values (a) and with different Mo/Ni feed molar ratios (b), respectively. Electrolyte: 1 mol·L⁻¹ KOH aqueous solution; and scan rate: 5 mV·s⁻¹.

Shundong Guan, et al., Sustainable Energy & Fuels, Fig. S16

Fig. S16 CV curves of the NiS-MoS₂ nanostructures on CC synthesized with and without SDS. Electrolyte: 1 mol·L⁻¹ KOH aqueous solution; and scan rate: $5 \text{ mV} \cdot \text{s}^{-1}$.

As shown in **Fig. S15** and **S16**, the NiS-MoS₂/CC nanostructures synthesized under the optimal conditions $(pH = 6.50, SDS = 0.2 \text{ mol} \cdot L^{-1} \text{ and Mo/Ni}$ feed molar ratio of 0.7) present the highest performance for oxygen evolution reaction (OER), which is similar with the case for HER.

Fig. S17 Estimation of the OER-related EASA. Cyclic voltammograms of NiS NPs/CC (a), MoS₂ NSs/CC (b) and NiS-MoS₂ HNSAs/CC (c) in a potential range near the OER. (d) The fitting plots of C_{dl} for the three samples.

Similar with the HER test, the OER-related EASA value of the catalysts can be also evaluated *via* the CV curves by selecting the potential range for OER without the faradic processes. From the CV curves shown in **Fig. S17a-c**, the C_{dl} values of the NiS NPs/CC, MoS₂ NSs/CC and NiS-MoS₂ HNSAs/CC were calculated as 5.06, 3.88 and 6.53 mF·cm⁻² (**Fig. S17d**), corresponding to their EASA values of 126.5, 91.0 and 163.2 cm², respectively. The NiS-MoS₂ HNSAs/CC has the highest EASA value, indicating its highest specific surface area.

Fig. S18 CV curves of the NiS NPs/CC, MoS₂ NSs/CC and NiS-MoS₂ HNSAs/CC after normalizing the current by the corresponding EASA.

It is seen that even if the current is normalized by the corresponding EASA, the performance of the NiS- MoS_2 HNSAs/CC is still significantly better than its counterparts (the NiS NPs/CC and MoS_2 NSs/CC), suggesting the highest intrinsic OER activity of such NiS- MoS_2 heterogeneous nanostructures.

Fig. S19 EIS Nyquist plots of NiS NPs/CC, $MoS_2 NSs/CC$ and NiS-MoS₂ HNSAs/CC for OER, where the inset shows the enlarged view at the range of high frequency. Electrolyte: 1 mol·L⁻¹ KOH aqueous solution. And the results were measured at 0.75 V *vs*. Hg/HgO.

From Fig. S19 it can be seen that, all the electrodes show small and similar series resistance (R_s) about 3.2 Ohm; but the present NiS-MoS₂ HNSAs/CC possesses the lowest charge transfer resistance (R_{ct}). This result indicates the fastest electrochemical reaction rate on the surface of NiS-MoS₂ HNSAs/CC. Furthermore, similar with the EIS Nyquist plots for HER, two capacitive semicircles with different curvatures are also displayed in the present NiS-MoS₂ HNSAs/CC, revealing that there are two different electrochemical reaction surfaces (NiS and MoS₂) during the OER process. And both capacitive semicircles show a lower R_{ct} than those of NiS NPs/CC and MoS₂ NSs/CC, suggesting there is a synergistic effect between NiS and MoS₂.

Shundong Guan, et al., Sustainable Energy & Fuels, Fig. S20

Fig. S20 CV curves (a) and Tafel plots (b) of the NiS-MoS₂ HNSAs/CC before and after 1,000 cycles for OER.

Similar with the HER test, only a slight increase (< 10%) in overpotential could be detected after 1,000 cycles test for OER, and the Tafel slope was almost kept as that in the initial scan, revealing an excellent cycling stability of the NiS-MoS₂ HNSAs/CC for OER.

Shundong Guan, et al., Sustainable Energy & Fuels, Fig. S21

Fig. S21 Microstructure after OER test. (a) Low- and (b) high-magnification SEM images of NiS-MoS₂ HNSAs/CC after 24 h electrocatalytic OER test. Electrolyte: 1 mol·L⁻¹ KOH aqueous solution; and current density: $10 \text{ mA} \cdot \text{cm}^{-2}$.

From Fig. S21, it can be seen that despite of the drastic redox reaction over NiS during the OER process, the morphology of the NiS-MoS₂ HNSAs catalyst was changed slightly after a long-term test (24 h). The diameter of a single fiber might be expanded somewhat, but the aligned structure of the nanosheets was changed very little.

Elements	At.%
S 2p	26.084
Mo3d S2s	15.306
C 1s	29.776
O 1s	22.868
Ni 2p	5.966

 Table S1. Elemental contents on the surface of the NiS-MoS2 HNSAs/CC (detected by XPS)

Table S2. Comparison on the HER performance of the present NiS-MoS₂ HNSAs/CC with other reported noble-

Catalysts ^a	η ₁₀ (mV)	$\eta_{ m onset}({ m mV})$	Tafel slope (mV·dec ⁻¹)	Electrolyte ^b	Ref.
NiS-MoS ₂ HNSAs/CC	106	51	56.7	1.0 M KOH	This work
NiFeO _x on carbon fiber paper	88	40	150	1.0 M KOH	7
Porous MoO ₂ nanosheets/NF	27	~ 0	41	1.0 M KOH	8
Amorphous Ni-Co complexes with 1T phase MoS ₂	70	-	38.1	1.0 M KOH	14
NiS ₂ /MoS ₂ hybrid nanowire	204	134	65	1.0 M KOH	17
Ni ₃ S ₂ nanosheet arrays/NF	223	-	-	1.0 M NaOH	21
MoS ₂ /Ni ₃ S ₂ nanostructures /NF	110	50	83	1.0 M KOH	22
MoS ₂ -Ni ₃ S ₂ heteronanorods/NF	98	31	61	1.0 M KOH	23
MoS ₂ /NiS nanocuboids/NF	92	-	113	1.0 M KOH	24
NiSe nanowires/NF	96	-	120	1.0 M KOH	S 1
Ni-Fe/nitrogen doped nanocarbon	219	-	101	1.0 M KOH	S2
Mo ₂ N-Mo ₂ C/HGr	154	18	68	1.0 M KOH	S3
NiCu@C	94	-	74	-	S4
Ni ₂ P@NPCNFs	104.2	-	79.7	1.0 M KOH	S5
CP/CTs/Co-S	190	-	131	1.0 M KOH	S 6
NiMo HNRs/Ti mesh	92	60	76	1.0 M KOH	S7
NiCo ₂ O ₄ hollow microcuboids	110	50	49.7	1.0 M NaOH	S 8
Co/N, B-doped carbon	183	-	73.2	1.0 M KOH	S 9
N-doped porous MoC nanobelts	110	52	49.7	1.0 M KOH	S10

metal free electrocatalysts in alkaline media

a) C: carbon; NF: nickel foam

b) M: mol·L⁻¹

Table S3. Comparison on the OER performance of the present NiS-MoS₂ HNSAs/CC with other reported noble-

Catalysts	η ₁₀ (mV)	Tafel slope (mV·dec⁻¹)	Electrolyte	Ref.
NiS-MoS ₂ HNSAs/CC	203	77.4	1.0 M KOH	This work
NiFeO _x /CFP	~ 230	31.5	1.0 M KOH	7
Porous MoO ₂ nanosheets/NF	260	54	1.0 M KOH	8
Amorphous Ni-Co complexes with 1T phase MoS ₂	235	45.7	1.0 M KOH	14
Ni ₃ S ₂ nanosheet arrays /NF	260	-	1.0 M NaOH	21
MoS ₂ /Ni ₃ S ₂ nanostructures/ NF	218	88	1.0 M KOH	22
MoS ₂ -Ni ₃ S ₂ heteronanorods/NF	249	66	1.0 M KOH	23
MoS ₂ /NiS nanocuboids/NF	271@ŋ ₁₅	53	1.0 M KOH	24
Ni-Fe/nitrogen doped nanocarbon	330	45	1.0 M KOH	S2
CP/CTs/Co-S	306	72	1.0 M KOH	S 6
NiMo HNRs/Ti mesh	310	47	1.0 M KOH	S7
NiCo ₂ O ₄ hollow microcuboids	290	53	1.0 M NaOH	S 8
Ni ₃ S ₂ nanorods/NF	187	157	0.1 M KOH	S11
NiFe LDHs	~300	40	1.0 M KOH	S12
Fe decorated porous Ni-Cd	290	38	0.1 M NaOH	S13
Ni-MnO/rGO	370	67	0.1 M KOH	S14
Fe/Ni _{2.4} /Co _{0.4} -MIL-53	219	53.5	1.0 M KOH	S 15
Ni-Fe LDH hollow nanoprism	280	49.4	1.0 M KOH	S16

metal free electrocatalysts in alkaline media

Table S4. Comparison on the overall water splitting performance of the present NiS-MoS $_2$ HNSAs/CC withrecently reported noble-metal free bi-functional electrocatalysts in alkaline media

Catalysts	HER η ₁₀ (mV)	OER η ₁₀ (mV)	Overall water splitting cell voltage (V, at 10 mA·cm ⁻²)	Electrolyte	Ref.
NiS-MoS ₂ HNSAs/CC	106	203	1.54	1.0 M KOH	This work
NiFeO _x /CFP	88	~230	1.51	1.0 M KOH	7
Porous MoO ₂ nanosheets/NF	27	260	1.52	1.0 M KOH	8
Amorphous Ni-Co complexes with 1T phase MoS ₂	70	235	1.48	1.0 M KOH	14
NiS microspheres film/NF	-	-	1.64	1.0 M KOH	19
Ni ₃ S ₂ nanosheet arrays/NF	223	260	~1.76	1.0 M NaOH	21
MoS ₂ /Ni ₃ S ₂ nanostructures/NF	110	218	1.56	1.0 M KOH	22
MoS ₂ -Ni ₃ S ₂ heteronanorods/NF	98	249	1.50	1.0 M KOH	23
MoS ₂ /NiS nanocuboids/NF	92	$271@\eta_{15}$	1.61	1.0 M KOH	24
Ni ₃ N-NiMoN heterostructures	31	277	1.54	1.0 M KOH	47
Ni-Fe-O nanowire network	-	244	1.64	1.0 M KOH	48
NiSe nanowires/NF	96	-	1.63	1.0 M KOH	S1
Ni-Fe/nitrogen doped nanocarbon	219	330	1.58	1.0 M KOH	S2
CP/CTs/Co-S	190	306	1.743	1.0 M KOH	S 6
NiMo HNRs/Ti mesh	92	310	1.64	1.0 M KOH	S7
NiCo ₂ O ₄ hollow microcuboids	110	290	1.65	1.0 M NaOH	S 8
CoP/NCNHP	115	310	1.64	1.0 M KOH	S17
Ni ₃ N-NiMoN heterostructures	31	277	1.54	1.0 M KOH	S18

Table S5. The theoretical amounts, measured amounts and Faradaic efficiencies of HER and OER at different stages over the NiS-MoS₂ HNSAs/CC.

Time (min)	Theoretical amount (µmol)		Measured amount (µmol)		Faraday efficiency (%)	
	HER	OER	HER	OER	HER	OER
5	15.55	7.77	14.35	6.98	92.3	89.8
10	31.09	15.55	30.63	14.36	98.5	92.3
15	46.64	23.32	46.53	21.54	99.8	92.4
20	62.18	31.09	61.92	28.78	99.6	92.6
25	77.73	38.87	76.62	36.13	98.6	93
30	93.28	46.64	92.69	43.12	99.4	92.4
35	108.82	54.41	108.46	50.68	99.7	93.1
40	124.37	62.18	123.58	57.99	99.4	93.3
45	139.92	69.96	139.78	65.38	99.9	93.4
50	155.46	77.73	155.16	72.17	99.8	92.8
55	171.01	85.5	169.66	79.74	99.2	93.3
60	186.56	93.27	186.05	87.18	99.7	93.5

Note S1. Calculations of Faraday efficiency

Firstly, the theoretical value (V_T) of H₂ and O₂ can be calculated based on the following formula,

$$V_T = \frac{I \times t}{F \times n_e} \tag{S1}$$

where *I* is the current (A) applied on the electrodes, *t* is the reaction time (s), and *F* is the Faraday constant. And n_e is the transferred electron number corresponding to the generation of every H₂ or O₂ molecule, which can be determined by the water splitting reactions in alkaline solution,⁹

H₂ on cathode:
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$
 (S2)

 $O_2 \text{ on anode:} \qquad 4OH^- \rightarrow 2H_2O + O_2 + 4e^-$ (S3)

Thus, the n_e values for H₂ and O₂ are 2 and 4, respectively.

Finally, the Faraday efficiency (e_F) can be calculated using the following formula,

$$e_F = \frac{V_M}{V_T} \times 100\%$$
(S4)

in which, V_M is the measured amount of H₂ or O₂.

References

- S1 C. Tang, N. Y. Cheng, Z. H. Pu, W. Xing and X. P. Sun, Angew. Chem. Int. Edit., 2015, 54, 9351-9355.
- S2 X. Zhang, H. M. Xu, X. X. Li, Y. Y. Li, T. B. Yang and Y. Y. Liang, ACS Catal., 2016, 6, 580-588.
- S3 H. J. Yan, Y. Xie, Y. Q. Jiao, A. P. Wu, C. G. Tian, X. M. Zhang, L. Wang and H. G. Fu, *Adv. Mater.*, 2018, 30, 1704156.
- S4 Y. Shen, Y. F. Zhou, D. Wang, X. Wu, J. Li and J. Y. Xi, Adv. Energy Mater., 2018, 8, 1701759.
- S5 M. Q. Wang, C. Ye, H. Liu, M. W. Xu and S. J. Bao, Angew. Chem. Int. Edit., 2018, 57, 1963-1967.
- S6 J. Wang, H. X. Zhong, Z. L. Wang, F. L. Meng and X. B. Zhang, ACS Nano, 2016, 10, 2342-2348.
- S7 J. Q. Tian, N. Y. Cheng, Q. Liu, X. P. Sun, Y. Q. He and A. M. Asiri, J. Mater. Chem. A, 2015, 3, 20056-20059.
- S8 X. H. Gao, H. X. Zhang, Q. G. Li, X. G. Yu, Z. L. Hong, X. W. Zhang, C. D. Liang and Z. Lin, Angew. Chem. Int. Edit., 2016, 55, 6290-6294.
- S9 H. B. Zhang, Z. J. Ma, J. J. Duan, H. M. Liu, G. G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. G. Meng, K. C.
 Wu and J. H. Ye, ACS Nano, 2016, 10, 684-694.
- S10 S. Y. Jing, L. S. Zhang, L. Luo, J. J. Lu, S. B. Yin, P. K. Shen and P. Tsiakaras, *Appl. Catal. B-Environ.*, 2018, **224**, 533-540.
- S11 W. J. Zhou, X. J. Wu, X. H. Cao, X. Huang, C. L. Tan, J. Tian, H. Liu, J. Y. Wang and H. Zhang, *Energy Environ. Sci.*, 2013, 6, 2921-2924.
- S12 F. Song and X. L. Hu, Nat. Commun., 2014, 5, 4477.
- S13 J. H. Kim, D. H. Youn, K. Kawashima, J. Lin, H. Lim and C. B. Mullins, *Appl. Catal. B-Environ.*, 2018, 225, 1-7.
- S14 G. T. Fu, X. X. Yan, Y. F. Chen, L. Xu, D. M. Sun, J. M. Lee and Y. W. Tang, *Adv. Mater.*, 2018, **30**, 1704609.

- S15 F. L. Li, Q. Shao, X. Q. Huang and J. P. Lang, Angew. Chem. Int. Edit., 2018, 57, 1888-1892.
- S16 L. Yu, J. F. Yang, B. Y. Guan, Y. Lu and X. W. Lou, Angew. Chem. Int. Edit., 2018, 57, 172-176.
- S17 Y. Pan, K. A. Sun, S. J. Liu, X. Cao, K. L. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Q. Liu, D. S.
 Wang, Q. Peng, C. Chen and Y. D. Li, *J. Am. Chem. Soc.*, 2018, 140, 2610-2618.
- S18 A. P. Wu, Y. Xie, H. Ma, C. G. Tian, Y. Gu, H. J. Yan, X. M. Zhang, G. Y. Yang and H. G. Fu, *Nano Energy*, 2018, 44, 353-363.