Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Supporting information

Silicon-doped Iridium electrode prepared by magnetron-sputtering toward advanced electrocatalyst for overall water splitting in acidic media

Zhandong Ren*, Lingzhi Jin, Li Deng, Ruoxi Ming, Ailian Zhang, Xiaorong Zhou, Bo Chai and Yuchan Zhu*

School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.

E-mail: renzhandong@163.com, zhuyuchan@163.com

Table S1[†] Preparation, composition analysis and loading capacity of Si-doped Ir electrodes with different proportions

Electrode	Ir : Si Sputtering power (W)	Ir : Si by ED-XRF (mol%:mol%)	Ir : Si by XPS (mol%:mol%)	Loading capacity (mg _{lr} cm ⁻²)
Si-3-doped Ir	50:40	96.71:3.29	70.30:29.70	0.120
Si-5-doped Ir	40:40	95.83:4.17	72.03:27.97	0.100
Si-10-doped Ir	30:40	91.04:8.96	62.80:37.20	0.075
Si-20-doped Ir	20:40	81.07:18.93	48.76:51.24	0.050
Si-30-doped Ir	10:40	69.35:30.65	38.00:62.00	0.025
Si-50-doped Ir	5:40	47.19:52.81	25.62:74.38	0.012



Fig. S1[†] X-ray diffraction curves of Si-doped Ir electrodes with different mole ratios.

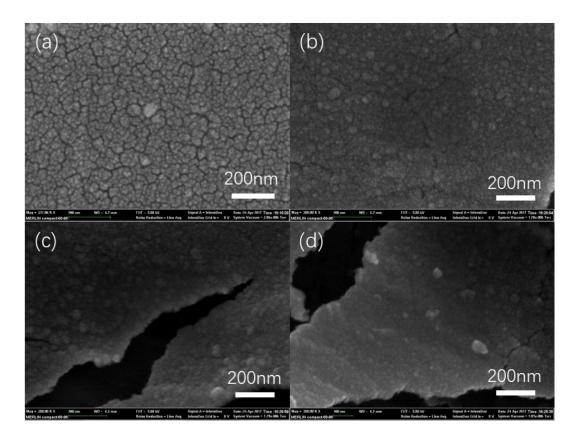


Fig. S2[†] SEM images of Ir (a, c) and Si-10-doped Ir (b, d) electrodes.

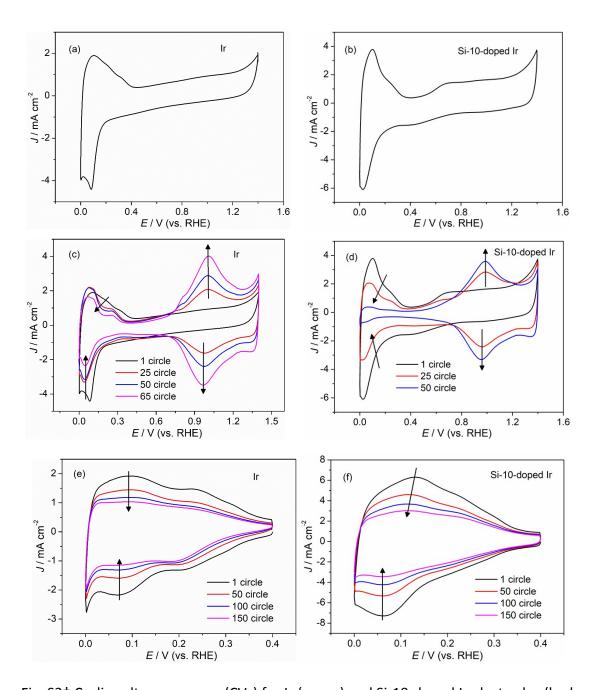


Fig. S3[†] Cyclic voltammograms (CVs) for Ir (a, c, e) and Si-10-doped Ir electrodes (b, d,

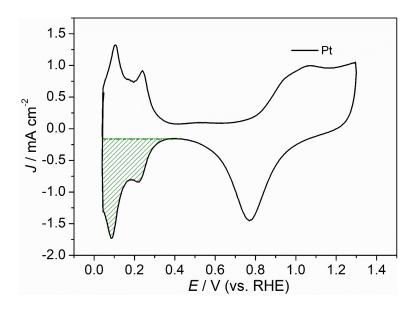


Fig. S4[†] Cyclic voltammogram for Pt electrode.

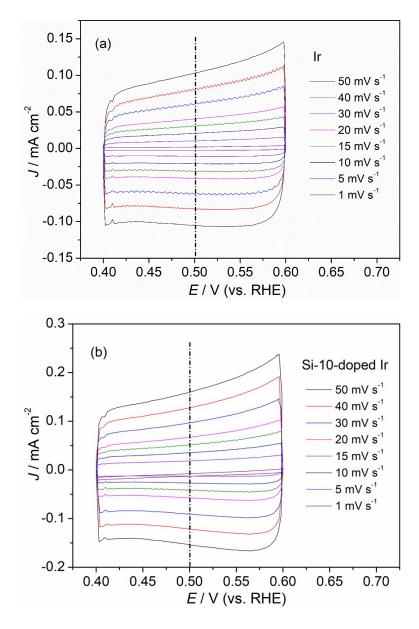


Fig. S5 † CVs scanning with different scanning speeds at 1 - 50 mV s $^{-1}$ for Ir (a) and Si-10-doped Ir (b) electrodes.

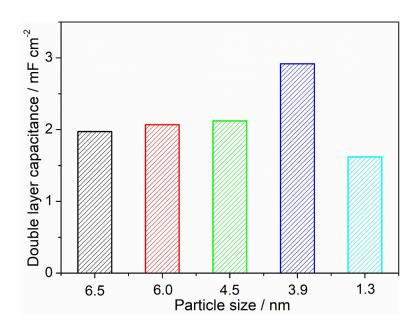


Fig. S6[†] Relationship between particle size and double layer capacitance.

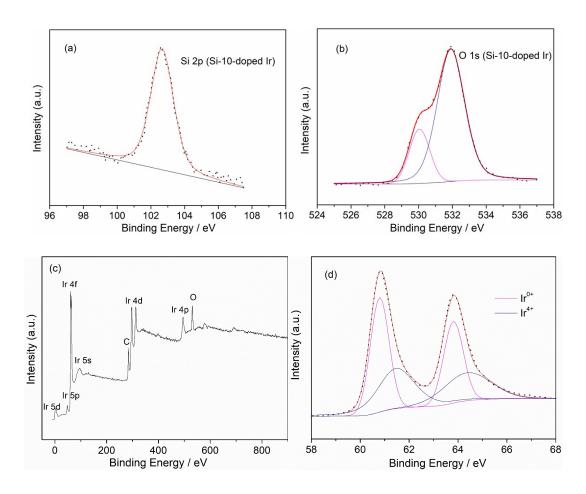


Fig. S7[†] XPS analysis of high-resolution spectrum of Si (a) and O (b) for Si-10-doped Ir electrodes. XPS analysis of Ir electrode for wide-range spectrum (c) and high-resolution spectrum (d).

Table S2[†] The Si 2p binding energy of Si-doped Ir electrodes with different proportions

Electrode	Binding energy of Si 2p (eV)	Negative shift of binding energy relative to that of Si ⁴⁺ (eV)
Si-3-doped Ir	102.5	0.5
Si-5-doped Ir	102.7	0.3
Si-10-doped Ir	102.6	0.4
Si-20-doped Ir	102.6	0.4
Si-30-doped Ir	102.7	0.3
Si-50-doped Ir	103.0	0
Si ⁴⁺	103.0	-

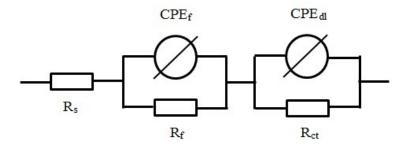


Fig. S8[†] The equivalent circuit of the impedance of Si-10-doped Ir and Ir electrodes

Table S3[†] Impedance parameters of Si-doped Ir and Ir electrodes obtained by fitting the experimental data to $R_s(R_fQ_f)(R_{ct}Q_{dl})$ equivalent circuit

Electrocatalyst	R_s $/\Omega$ cm 2	$ m R_f$ $/\Omega~cm^2$	C _f /μF cm ⁻²	n_{f}	R_{ct} $/\Omega$ cm ²	C_{dl} / $\mu F~cm^{-2}$	n _{dl}
lr	0.8337	0.2837	3.98	1.03	0.7702	192	0.5966
Si-10-doped Ir	0.8295	0.1931	3.50	1.08	0.5709	329	0.6588

Table S4[†] The content of Si-10-doped Ir after the accelerated linear potential sweeps over 1000 CV cycles and constant potential at η = 0.2V for 10000s

		The molar content / m	nol%
Element	Initial	After 1000	After 10000s at
	Initial	CV cycles	η = 0.2 V
Ir	91.04	92.02	92.16
Si	8.96	7.98	7.84

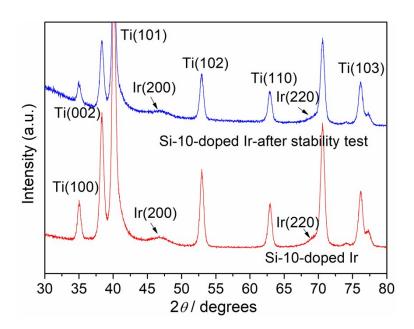


Fig. S9[†] X-ray diffraction curves of Si-10-doped Ir electrode before and after the long-term HER stability test at η = 0.2 V for 10000s.