Environment-friendly, co-catalyst and solvent-free fixation of CO₂ using an ionic Zinc(II)-porphyrin complex immobilized in porous metal-organic framework

Nayuesh Sharma, Sandeep Singh Dhankhar and C. M. Nagaraja*

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001,

Punjab, India. Tel: 91- 1881-242229. Email: <u>cmnraja@iitrpr.ac.in</u>

Contents:

Experimental section

Figure S1. FTIR spectra of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄, [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224 and PCN-224.

Figure S2. UV-Vis spectra of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄, [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224 and PCN-224.

Figure S3. Physical photos of: (a) PCN-224, (b) $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$, $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4$.

Figure S4. PXRD patterns: (a) pattern calculated from single crystal X-ray data for PCN-224;

(b) as-synthesized PCN-224; (c) for [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224.

Figure S5. Thermogravimetric analysis of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224.

Figure S6. SEM image of: (a) PCN-224 and (b) [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224.

Figure S7. EDS mapping of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224.

Figure S8. X-ray photoelectron spectroscopy (XPS) analysis of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224: (a) Survey scan, (b) Zr 3d, (c) N 1s, (d) C 1s, (e) Zn 2p and (f) I 3d.

Figure S9. Pore size distribution plots by using QSDFT on N_2 isotherm for $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ and PCN-224.

Figure S10. Carbon dioxide adsorption isotherm of PCN-224 at 273K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Figure S11. Carbon dioxide adsorption isotherm of PCN-224 at 298K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Figure S12. Enthalpy of carbon dioxide adsorption for PCN-224 using Clausius-Clapeyron equation calculations.

Figure S13. Carbon dioxide adsorption isotherm of $[Zn(II)NMeTPyP]^{4+}[I^{-}]_{4}@PCN-224$ at 273K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Figure S14. Carbon dioxide adsorption isotherm of $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 298K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Figure S15. Enthalpy of carbon dioxide adsorption for [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224 using Clausius-Clapeyron equation calculations.

Figure S16. (a) Optimized geometry of $[Zn(II)NMeTPyP]^{4+}[I^-]_4@PCN-224$ (b) View of stacking of porphyrin macrocyclic rings via π - π interactions between the porphyrin rings of PCN-224 and the $[Zn(II)NMeTPyP]^{4+}[I^-]_4$ complex, respectively.

Table S1. Optimization of reaction parameters for cycloaddition of CO₂ with ECH.

Figure S17. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with epichlorohydrin catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S18. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO_2 with epichlorohydrin catalysed by PCN-224 at 0.8 MPa of CO_2 and 90 °C.

Figure S19.¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO_2 with epichlorohydrin catalysed by $[Zn(II)NMeTPyP]^{4+}[I^-]_4$.

Figure S20. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with 1,2-epoxypropane catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S21. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with 1,2-epoxybutane catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S22. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with 1,2-epoxyhexane catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_{4}@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S23. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with 1,2-epoxydecane catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S24. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with styrene oxide catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C. **Figure S25.** Hot filtration test.

Figure S26. Catalytic conversion of epichlorohydrin (ECH) with time: (a) as synthesized $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$, (b) after catalysis.

Figure S27. First-order kinetics curves of catalytic conversion of epichlorohydrin (ECH) with time: (a) as synthesized [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224, (b) after catalysis.

Figure S28. PXRD patterns of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224 (a) as-synthesized sample;
(b) for activated sample by heating at 120 °C for 12 hours; (c) recycled sample after catalysis.

Figure S29. UV-Vis. Spectra: (a) as synthesized [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224, (b) after catalysis.

Figure S30: FTIR Spectra: (a) as synthesized [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224, (b) after catalysis.

Table S2. Comparison of the catalytic activity of $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ with reported MOF catalyst known for co-catalyst-free cycloaddition of CO₂ with epoxides. **Table S3.** Optimized coordinates for structure of $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$.

Experimental section

(a) Materials

All reagents and solvents were purchased from commercial sources and used without further purification. ZrCl₄ (98 %), Zn(OAc)₂.6H₂O, and pyrrole (98 %) were obtained from Sigma-Aldrich Chemicals. Methyl iodide (98 %) and propionic acid (99 %) were received from TCI Chemicals. [Zn(II)NMeTPyP]⁴⁺[I⁻]₄ and H₄TCPP ligands was prepared by following the previously reported literature procedure with modification and characterized by ¹H NMR, UV-Vis. and FTIR spectroscopy.¹ PCN-224 is synthesized based on the reported procedure and the phase purity of the compound was identified by PXRD analysis, UV-Vis and FTIR spectroscopy.²

(b) Physical measurements

Powder X-ray powder diffraction (PXRD) patterns were collected on a PANalytical X'PERT PRO diffractometer using Cu K α radiation (λ =1.542 Å; 40 kV, 20 mA). Elemental analysis (C, H, and N) of the compounds were collected on a Thermo Fischer Flash 2000 elemental analyzer. Fourier transform infrared spectra were recorded on KBr pellets using Bruker IFS66 v/S spectrophotometer. Thermogravimetric analysis (TGA) of MOF1 was recorded in the temperature range of RT–600 °C at a heating rate of 10 °C min⁻¹on a Mettler Toledo thermogravimetric analyzer under N₂ atmosphere with a flow rate of 30 mLmin⁻¹. The products of the catalytic reactions were analyzed by ¹H NMR spectra recorded in CDCl₃ on a JEOL JNM-ECS-400 spectrometer at 400 MHz.

(c) Adsorption measurements

 N_2 adsorption measurements of PCN-224 and $[Zn(II)NMeTPyP]^{4+}[I^-]_4@PCN-224$ were carried out at 77K, whereas CO₂ adsorption measurements were conducted at 273 and 298K on Quadrasorb-SI automatic volumetric instrument. Ultrapure (99.995%) N_2 , and CO₂ gases were utilized for carrying out the adsorption measurements. Prior to adsorption measurements, the $[Zn(II)NMeTPyP]^{4+}[I^-]_4@PCN$ sample (~ 0.1 g) was degassed at 393K under vacuum (18 mTorr) for 16 hours, then the activated sample was connected to the surface area analyzer and the operations were computer controlled. The temperature 77 K was achieved using liquid nitrogen, while 273 and 298K by using water/ethylene glycol (1:1) and the dead volume of the sample cell was determined using Helium gas (99.995%).

(d) Analysis of gas adsorption isotherms

Clausius-Clapeyron Equation³ was used to calculate the enthalpies of CO_2 adsorption. By using Langmuir Freundlich equation⁴ an accurate fit was retrieved which gives a precise prediction of hydrogen adsorbed at saturation. A modification of Clausius-Clapeyron equation is used for calculations.

$$\ln\left[\frac{P_1}{P_2}\right] = \Delta H_{ads} X \left[\frac{T_2 - T_1}{R X T_2 T_1}\right]$$
------(i)

where, P_1 and P_2 = pressures for isotherm at 273K and 298K respectively.

 T_1 and T_2 = temperatures for isotherm at 273K and 298K respectively.

 ΔH_{ads} = Enthalpy of adsorption.

R = Universal gas constant = 8.314 J/K/mol.

Pressure is a function of amount of gas adsorbed which was determined by using the Langmuir-Freundlich fit.

$$\frac{Q}{Q_{m}} = \frac{B X P^{(1/t)}}{1 + (B X P^{(1/t)})}$$
-----(ii)

where, Q = moles of gas adsorbed.

 Q_m = moles of gas adsorbed at saturation.

B and t = constants.

P = Pressure.

By rearranging equation (ii) we get equation (iii)

$$P = \left[\frac{Q/Q_{m}}{B - (B X Q/Q_{m})}\right]^{t}$$
------(iii)

Substituting equation (iii) into equation (i) we get

$$\Delta H_{ads} = \frac{R X T_1 X T_2}{T_2 - T_1} \ln \frac{\left[\frac{Q/Q_{m1}}{B - (B X Q/Q_{m1})}\right]^{t1}}{\left[\frac{Q/Q_{m2}}{B - (B X Q/Q_{m2})}\right]^{t2}} -....(iv)$$

In equation (iv), subscript 1 and 2 are representing data corresponding to 273K and 298K in case of carbon dioxide gas.

randomly inside the pores of PCN-224 and then the geometry optimization was carried out.

(e) Synthesis and characterization

Synthesis of Tetrakis(4-pyridyl)porphyrin: In a 250-mL round bottom flask 4pyridinecarboxaldehyde (5.63 g, 50 mmol) was dissolved in propionic acid (100 mL). Pyrrole was then added dropwise (3.36 g, 50 mmol) and the solution was refluxed at 140 °C for 12h. After the reaction mixture the solvent was removed under reduced pressure and precipitated in DMF at low temerature. The precipitate was filtered and washed with diethyl ether and dried under vacuum to yield purple solid. ¹H-NMR (400 MHz, DMSO-d6,) δ 8.94 (d, 8H, δ 8.83 (s, 8H,), δ 8.07 (d, 8H,), -2.83 (s, 2H).

Synthesis of 5, 10, 15, 20-tetrakis (4'-pyridyl) Zn(II) porphyrin, [Zn(II)TPyP]. In a 250mL round bottom flask TPyP (100 mg, 0.16 mmol) and 1 ml solution of $Zn(CH_3COO)_2 \cdot 2H_2O$ (88 mg, 0.40 mmol) in methanol were added in 60 mL chloroform and the mixture was stirred for 20 hours at room temperature. The resulting violet product is precipitated by adding methanol to the concentrated reaction mixture, filtered, washed thoroughly with methanol and dried under vacuum. UV-Vis. (λ) 427 (Soret band), 560 nm, 599 nm (Q bands). ¹H-NMR (400 MHz, DMSO-d₆) δ 8.94 (d, 8H, δ 8.83 (s, 8H,), δ 8.07 (d, 8H,).

Synthesis of 5, 10, 15, 20-tetrakis (1-methylpyridinium-4'-yl) Zn(II) porphyrin, [Zn(II)NMeTPyP]⁴⁺[I⁻]₄.

In a 100-mL round bottom flask Zn(II)TPyP (109 mg, 0.16 mmol) and excess of methyl iodide (0.5 mL, 8 mmol) is dissolved in 20 mL DMF and the mixture was stirred for 20 hours at 45 °C. After cooling down to room temperature 40 mL of diethyl ether was introduced. The resultant violet solid was filtered and washed with diethyl ether and chloroform and dried under vacuum. UV-Vis. (λ) 450 nm (Soret band), 576 nm, 624 nm (Q bands). ¹H NMR (400 MHz, DMSO-d6,) δ 9.43 (d, 8H), δ 9.12 (s, 8H), δ 8.93 (d, 8H), δ 4.73 (s, 12H). FTIR (KBr, cm⁻¹): 2998, 1632, 1498, 1386, 1332, 1258, 1188, 1093, 998, 860, 719, 664. ESI-MS m/z calcd. for C₄₄H₃₆N₈Zn⁴⁺ ([M-4I]⁺) 185.06, found 185.03.

Synthesis of 5, 10, 15, 20-Tetrakis (4-methoxycarbonylphenyl) porphyrin (TPPCOOMe)

In a 250-mL round bottom flask, methyl 4-formylbenzoate (6.9 g, 0.042 mol) was added in 100 mL of propionic acid. To this solution 0.043 mol (3.0 mL) pyrrole was added dropwise and the solution was refluxed at 140 °C for 12h. After the reaction mixture was cooled down to room temperature the solid was filtered and washed with methanol and water and dried under vacuum to obtain purple solid (1.8 g, 2.12 mmol, 20% yield). ¹H NMR (400 MHz, CDCl₃) δ : 8.82 (s, 8H), 8.43 (d, 8H), 8.29 (d, 8H), 4.10 (s, 12H), -2.83 (s, 2H).

Synthesis of [5, 10, 15, 20-Tetrakis (4-carboxyphenyl) porphyrin] (H₄TCPP)

In a 250-mL round bottom flask 0.75 g of TPPCOOMe was dissolved in 25 mL of THF and 25 mL of MeOH to which an aqueous solution of 2.63 g KOH (0.0469 mol) in 25 mL H_2O was

added. This mixture was refluxed for 12h and after being cooled to room temperature the solvent was evaporated. Additional water was added and filtered and the filtrate was acidified with 1M HCl until complete precipitation of the purple solid of the ligand which was collected by filtration, washed with water and dried in vacuum desiccator.

Synthesis of PCN-224

PCN-224 was prepared based on the reported procedure. $ZrCl_4$ (120 mg,), benzoic acid (1.2 g), H₄TCPP ligand (40 mg), acetic acid (0.5 mL) were mixed in 7.5 mL of DMF and the solution was sonicated for 15 min in a 23 mL Teflon vessel. The vessel was sealed in a stainless-steel autoclave which was kept at 120 °C for 24 h. After cooling to room temperature purple solid was centrifuged and washed with acetone and the phase purity of the compound was identified by PXRD analysis. FTIR (KBr, cm⁻¹): 3314, 1657, 1602, 1542, 1412, 1269, 1180, 1020, 962, 871, 799, 771, 724, 653. UV-Vis. (λ) 439 nm (Soret band), 523 nm, 560 nm, 604 nm and 659 nm (Q bands).

Synthesis of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224

The complex@MOF hybrid was synthesized as follows: In a 100-mL round bottom flask, 30 mg of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄ was dissolved in 20 mL of DMF to this solution, 70 mg of freshly activated PCN-224 was added and the mixture was stirred for 24 h at 60 °C. After cooling to room temperature the brown solid obtained was centrifuged and washed with diethyl ether and acetone. The resulting hybrid material was thoroughly characterized by PXRD, TGA, UV-vis, FT-IR, MP-AES, and SEM-EDS analysis. FT-IR (KBr, cm⁻¹): 3314, 2992, 1657, 1634, 1542, 1498, 1412, 1386, 1332, 1269, 1258, 1188, 1180, 1020, 1093, 998, 962, 871, 860, 799, 771, 724, 719, 653 (Fig. S1). UV-Vis (λ) 433 nm (Soret band), 521 nm, 554 nm, 593 nm and 650 nm (Q bands) (Fig. S2).

Figure S1: FTIR spectra of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄, [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224 and PCN-224.

Figure S2. UV-Vis spectra of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄, [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224 and PCN-224.

Figure S3: Physical photos of: (a) PCN-224, (b) $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$, $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4$.

Figure S4. PXRD patterns: (a) pattern calculated from single crystal X-ray data for PCN-224; (b) as-synthesized PCN-224; (c) for [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224.

Figure S5. Thermogravimetric analysis of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224.

Figure S6: SEM image of: (a) PCN-224 and (b) [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224.

Figure S7: EDS mapping of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224.

Figure S8. X-ray photoelectron spectroscopy (XPS) analysis of $[Zn(II)NMeTPyP]^{4+}[I^{-}]_{4}@PCN-224$: (a) Survey scan, (b) Zn 2p, (c) N 1s, (d) C 1s, (e) I 3d, (f) Zr 3d and (g) O 1s.

Figure S9. Pore size distribution plots estimated by using QSDFT on N_2 isotherm for $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ and PCN-224.

Figure S10. Carbon dioxide adsorption isotherm of **PCN-224** at 273K. The solid line shows the best fit to the data using Langmuir- Freundlich Equation.

Figure S11. Carbon dioxide adsorption isotherm of **PCN-224** at 298K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Figure S12. Enthalpy of carbon dioxide adsorption for **PCN-224** calculated using Clausius-Clapeyron equation.

Figure S13. Carbon dioxide adsorption isotherm of $[Zn(II)NMeTPyP]^{4+}[I^-]_4@PCN-224$ at 273K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Figure S14. Carbon dioxide adsorption isotherm of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224 at 298K. The solid line shows the best fit to the data using Langmuir-Freundlich Equation.

Figure S15. Enthalpy of carbon dioxide adsorption for [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224 calculated using Clausius-Clapeyron equation.

Figure S16. (a) Optimized geometry of $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ (b) View of stacking of porphyrin macrocyclic rings via π - π interactions between the porphyrin rings of PCN-224 and the $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4$ complex.

	Cl $(1)^{O}$ + CO ₂ $(2n(II)^{O}NMeTPyP)^{4+}[I^{-}]_{4}@PCN-224$ 90 °C, 0.8 Mpa CO ₂ Cl				
S. N.	Catalyst	CO ₂ pressure (MPa)	Temperature (°C)	Time (h)	Conversion (%)
1	None	None	None	24	0
2	None	None	90	24	0
3	None	0.8	90	24	0
4	^(a) [Zn(II)NMeTPyP] ⁴⁺ [I ⁻] ₄ @PCN-224	0.8	90	24	>99
5	[Zn(II)NMeTPyP] ⁴⁺ [I ⁻] ₄ @PCN-224	None	90	24	0
6	^(b) PCN-224	0.8	90	24	10
7	PCN-224	None	90	24	0
8	$(c)[Zn(II)NMeTPyP]^{4+}$ $[I^-]_4$	0.8	90	24	55.2

Table S1. Optimization of reaction parameters for cycloaddition of CO_2 with ECH.

Reaction conditions: ECH (10 mmol), catalyst: (a) 50 mg (0.012 mmol) (b) 47.54 mg (c) 2.46 mg.

Figure S17. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with epichlorohydrin catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S18. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO_2 with epichlorohydrin catalysed by PCN-224 at 0.8 MPa of CO_2 and 90 °C.

Figure S19. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with epichlorohydrin catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_{4}$ at 0.8 MPa of CO₂ and 90 °C.

Figure S20. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with 1,2-epoxypropane catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S21. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with 1,2-epoxybutane catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S22. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with 1,2-epoxyhexane catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S23. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with 1,2-epoxydecane catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S24. ¹H NMR (CDCl₃, 400 MHz) spectra for the cycloaddition reaction of CO₂ with styrene oxide catalysed by $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ at 0.8 MPa of CO₂ and 90 °C.

Figure S25. Hot filtration test.

Figure S26. Time-dependent catalytic conversion of epichlorohydrin (ECH) with time: (a) as synthesized and (b) recycled catalyst after five cycles.

Figure S27. First-order kinetic curves of catalytic conversion of ECH with time for (a) as synthesized and (b) recycled catalyst after five cycles.

Figure S28. PXRD patterns of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224, (a) as-synthesized sample;

(b) for activated sample by heating at 120 °C for 12 h; (c) recycled sample after catalysis.

Figure S29. UV-Vis Spectra: (a) as synthesized $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$, (b) recycled after catalysis.

Figure S30. FTIR Spectra: (a) as synthesized $[Zn(II)NMeTPyP]^{4+}[I^{-}]_{4}@PCN-224$, (b) recovered after five cycles of catalysis.

Table S2. Comparison of the catalytic activity of $[Zn(II)NMeTPyP]^{4+}[I^{-}]_4@PCN-224$ with reported MOFs known for co-catalyst-free cycloaddition of CO₂ with epoxides.

S. No.	Substrate	MOF catalyst	Cataly st	Reaction Conditions	Conve rsion	Reference
1,00			mol (%)		(%)	
1.	cı	(I_)Meim-UiO-66	0.52	0.1 MPa, 120 °C, 24 h	100	5a
2.	R	F-IRMOF-3	-	0.1 Mpa, 120 °C, 3h	89	5b
3.	CI	Zn-TATAB	0.42	0.1 Mpa, 100 °C, 16 h	98	5c
4.	CI	Co-TATAB	0.2	0.1 Mpa, 80 °C, 15h	98	5d
5.	×	MIL-101-N(n- Bu) ₃ Br	0.9	2 MPa, 80 °C, 8 h	87.5	6a
6.	Å	polyILs@MIL-101	-	0.1 MPa, 45 °C, 48 h	94	6b
7.	cı 🗸 🛆	IL@MIL-101-SO ₃ H	0.43	0.1 Mpa, 90 °C, 48 h	98	60
8.	CI O	MIL-101-IP	0.298	0.1 Mpa, 50 °C, 68 h	99	6d
9.	cı 🗸 🖄	II-ZIF-90	0.49	0.1 Mpa, 120 °C, 3h	94	6e
10.	cı	UiO-67-IL	1.5	0.1 Mpa, 90 °C, 12h	95	6f
11.	CI	F-ZIF-90	0.177	1.17 MPa, 120 °C, 6 h	94	6g
12.	Å	IL/MIL-101-NH ₂	0.435	1.3 MPa, 120 °C, 1 h	91	6h
13	cı	ZnTCPP⊂(Br [–])Etim- UiO-66	0.95	0.1 Mpa, 140 °C, 14 h	86.9	6i
14	CI 20	FЛ-C10	0.35	0.1 Mpa, 60 °C, 24 h	87	6j
15		SalenCo(23%)C(Br) Etim-UiO-66	-	0.1 Mpa, 120 °C, 12 h	84	6k
16.	Å	[Zn(II)NMeTPyP] ⁴⁺ [I ⁻] ₄ @PCN-224	0.116	0.8 MPa, 90 °C, 24 h	95.2	Present work

17.	CI	[Zn(II)NMeTPyP] ⁴⁺ [I ⁻] ₄ @PCN-224	0.116	0.8 MPa, 90 °C, 24 h	>99	Present work
18.	8	$[Zn(II)NMeTPyP]^{4+}[I^{-}]_{4}@PCN-224$	0.116	0.8 MPa, 90 °C, 24 h	>99	Present work

Table S3: Optimized coordinates for structure of [Zn(II)NMeTPyP]⁴⁺[I⁻]₄@PCN-224

Zr	7.80700000 10.19400000	8.24300000	С	9.77100000	20.15500000	2.85600000
0	8.21800000 11.93000000	6.77800000	С	9.49900000	19.64400000	4.17500000
0	7.27300000 9.44200000 1	0.23000000	Н	9.27800000	20.27000000	5.04000000
0	8.48300000 7.97400000 8	3.45500000	0	10.61300000	25.36300000	7.80600000
Ν	9.92300000 19.03400000	2.00800000	Ν	10.17900000	21.21500000	-0.01200000
С	9.25800000 12.77300000	6.65700000	С	10.82500000	23.51500000	5.63000000
С	9.37900000 13.65300000	5.50100000	Н	11.69900000	23.67800000	6.27200000
С	8.32200000 13.81300000	4.54300000	С	10.90800000	22.67700000	4.48800000
Н	7.38700000 13.25900000	4.68900000	Н	11.84600000	22.15300000	4.25600000
С	8.47400000 14.70400000	3.44600000	С	10.08800000	22.01300000	1.15800000
Н	7.64400000 14.86000000	2.74300000	С	10.21100000	23.41100000	0.79900000
С	9.68900000 15.44400000	3.26800000	Н	10.19200000	24.24500000	1.50400000
С	9.80100000 16.50900000	2.23100000	0	10.65300000	12.65600000	-7.91000000
С	9.75100000 17.83900000	2.74200000	С	9.58100000	12.92700000	-7.14600000
С	9.48300000 18.22600000	4.10600000	С	9.70200000	13.89500000	-6.06200000
Н	9.27000000 17.52300000	4.91300000	С	10.96500000	14.52800000	-5.79300000
0	10.25900000 12.76900000	7.55300000	Н	11.82900000	14.27600000	-6.42000000
Ν	10.01600000 17.02600000	-0.23900000	С	11.09500000	15.44100000	-4.71600000
С	10.60900000 14.37200000	5.30400000	Н	12.06300000	15.91400000	-4.50200000
Н	11.43300000 14.21500000	6.01100000	С	9.98100000	15.74500000	-3.86900000
С	10.76000000 15.24100000	4.19800000	С	10.10700000	16.72700000	-2.75300000
Н	11.69800000 15.79400000	4.05400000	С	10.06600000	16.23100000	-1.41200000
С	9.93100000 16.13400000	0.85700000	С	10.03100000	14.82800000	-1.04400000
С	9.95100000 14.76800000	0.37000000	Н	10.07500000	13.99100000	-1.74600000
Н	9.91300000 13.87400000	0.99800000	0	10.89100000	25.93800000	-7.56300000
0	8.36300000 25.77300000	7.30600000	С	9.89700000	25.72400000	-6.68300000
С	9.51200000 25.11100000	7.07700000	С	10.06800000	24.77400000	-5.59400000
С	9.59700000 24.20000000	5.93700000	С	11.29800000	24.05000000	-5.42900000
С	8.46800000 24.01300000	5.06800000	Н	12.13000000	24.25600000	-6.11400000
Н	7.53200000 24.53500000	5.30000000	С	11.43400000	23.09800000	-4.38500000
С	8.56400000 23.18600000	3.91800000	Н	12.37200000	22.53700000	-4.26900000
Н	7.69300000 23.04600000	3.26400000	С	10.34400000	22.83600000	-3.49200000
С	9.78300000 22.49200000	3.61800000	С	10.39200000	21.74000000	-2.48700000
С	9.87900000 21.52600000	2.48400000	С	10.33000000	22.10500000	-1.10400000

C	10.36500000	23.47000000	-0.60800000	0	8.78700000	11.58600000	9.66900000
Н	10.49200000	24.35900000	-1.22900000	Zr	11.14600000	27.47800000	-9.26600000
0	8.43000000	12.24400000	-7.30200000	0	11.77200000	9.45900000	9.69900000
Ν	10.32500000	19.21000000	-2.26600000	0	9.08900000	26.76700000	-9.59800000
С	8.58400000	14.19200000	-5.21200000	Zr	10.21200000	30.16600000	7.91100000
Н	7.62200000	13.70100000	-5.40800000	Zr	7.83400000	30.60700000	10.64600000
С	8.72500000	15.10700000	-4.13700000	Zr	7.78000000	7.28200000 -	10.11200000
Н	7.86500000	15.33800000	-3.49400000	Zr	7.45100000	30.64600000	-10.38400000
С	10.21600000	18.09800000	-3.13300000	Zr	10.34700000	30.71400000	-8.37400000
С	10.21500000	18.62000000	-4.47500000	Zr	8.32900000	27.33800000 .	-11.51200000
Н	10.12000000	18.01200000	-5.37600000	Zr	11.22000000	7.75400000	-11.10500000
0	8.73300000	26.39300000	-6.77700000	Zr	10.74000000	30.07400000	-11.73200000
С	8.98800000	24.53600000	-4.67800000	Zr	8.72300000	10.31500000 .	-11.81800000
Н	8.04900000	25.08600000	-4.80800000	Zr	8.81700000	27.53300000	11.98400000
С	9.13000000	23.58600000	-3.63900000	Zr	11.19200000	10.85800000	-9.24900000
Н	8.29400000	23.38300000	-2.95600000	Zr	11.18400000	27.08700000	9.23100000
С	10.36800000	20.41200000	-3.01200000	Zr	10.93200000	11.41500000	9.24100000
С	10.31100000	20.03500000	-4.40200000	Zr	11.24000000	8.72100000	11.68000000
Н	10.29200000	20.74100000	-5.23300000	0	6.48600000	7.67000000	12.27200000
Zr	7.90500000	27.96800000	-8.16300000	0	12.67700000	6.85800000	8.85300000
Zr	7.84300000	10.40500000	-8.49900000	0	11.97900000	8.70200000	-6.43600000
0	6.35000000	11.80500000	-9.56600000	0	6.64200000	9.89000000	13.02200000
0	9.85200000	9.93900000 ·	-7.76800000	0	11.87400000	6.09200000	-7.97900000
0	8.04900000	8.09500000 .	-8.10500000	0	12.34200000	8.99800000	6.92900000
С	6.18100000	12.17400000 -	-10.83300000	0	8.86800000	5.98100000	12.28300000
0	6.94900000	11.73900000 ·	-11.84000000	0	12.74000000	28.06400000	-7.74200000
0	6.33800000	26.34300000	-8.68300000	0	7.36800000	28.46200000	10.59400000
С	6.00200000	25.71400000	-9.80600000	0	7.06200000	28.57400000	-10.22200000
0	6.60900000	25.92300000 .	-10.98100000	0	7.31900000	9.31500000 -	10.47000000
0	6.38600000	12.06100000	11.06100000	0	9.96200000	28.63300000	-7.83600000
С	5.69000000	12.16500000	9.93200000	0	11.74700000	8.71800000	-9.26700000
0	7.21500000	25.89300000	11.88000000	0	9.18600000	11.34200000	-9.98300000
С	6.40800000	25.48300000	10.90400000	0	9.21900000	26.59400000	10.04000000
0	6.01900000	11.53900000	8.80400000	0	11.56400000	29.56700000	-9.81800000
0	6.43300000	25.97100000	9.66500000	0	9.09400000	8.86300000	12.10300000
Zr	8.12100000	7.47200000	10.67700000	0	8.03200000	30.29800000	-8.30900000
0	10.26300000	7.31400000	10.25200000	0	10.45000000	27.90300000	-11.59800000
Zr	10.79200000	8.05800000	8.27600000	0	10.55200000	10.92500000	11.47500000
0	9.94500000	10.02000000	7.83000000	Zr	28.36200000	7.95100000	8.04600000
Zr	10.36300000	7.82000000	-7.78000000	0	26.67800000	8.65700000	6.65100000
0	9.79800000	6.76800000 ·	-9.75400000	0	28.94200000	7.11300000	9.97500000
Zr	7.78800000	27.54200000	8.64600000	0	30.61700000	8.39200000	8.42300000
0	9.75200000	28.04300000	7.83800000	Ν	19.42200000	10.66200000	2.16800000
0	7.97500000	29.84800000	8.46500000	С	25.86300000	9.72300000	6.63900000
Zr	8.24700000	10.83600000	11.65100000	С	24.92200000	9.90100000	5.54400000

С	24.72900000	8.86900000	4.56500000	С	22.74300000	10.33200000 -3.69600000
Н	25.30100000	7.93800000	4.65200000	С	21.75600000	10.48500000 -2.59100000
С	23.78300000	9.04100000	3.52100000	С	22.24100000	10.49400000 -1.24600000
Н	23.60500000	8.23500000	2.79400000	С	23.64100000	10.47000000 -0.86700000
С	23.01000000	10.24500000	3.42300000	Н	24.48300000	10.47900000 -1.56300000
С	21.93800000	10.39500000	2.40400000	0	12.62300000	10.69300000 -7.48700000
С	20.60500000	10.44700000	2.91300000	С	12.74200000	9.81000000 -6.48300000
С	20.20200000	10.29800000	4.29000000	С	13.69600000	10.06600000 -5.41600000
Н	20.88700000	10.09900000	5.11500000	С	14.42800000	11.30400000 -5.36900000
0	25.93000000	10.65700000	7.59700000	Н	14.22500000	12.06700000 -6.13100000
Ν	21.43700000	10.50100000	-0.07900000	С	15.38900000	11.53000000 -4.34800000
С	24.17100000	11.12100000	5.43200000	Н	15.94400000	12.47700000 -4.31500000
Н	24.35200000	11.91900000	6.16200000	С	15.65500000	10.52600000 -3.35800000
С	23.23900000	11.29100000	4.37900000	С	16.74400000	10.68500000 -2.35800000
Н	22.66900000	12.22500000	4.29600000	С	16.37500000	10.81000000 -0.98300000
С	22.31900000	10.45800000	1.02600000	С	15.01000000	10.94300000 -0.50800000
С	23.68900000	10.45300000	0.55000000	Н	14.12300000	11.00700000 -1.14300000
Н	24.57900000	10.44400000	1.18500000	0	26.09200000	8.57700000 -7.14200000
С	12.93300000	10.20100000	6.82400000	Ν	19.26900000	10.67300000 -2.12300000
С	13.93500000	10.38800000	5.78300000	С	24.23300000	8.86800000 -5.03100000
С	14.21200000	9.30600000	4.88000000	Н	24.69000000	7.88800000 -5.21700000
Н	13.66200000	8.36500000	4.99500000	С	23.35000000	9.05500000 -3.93800000
С	15.17300000	9.45800000	3.85000000	Н	23.10300000	8.21500000 -3.27600000
Н	15.37100000	8.63400000	3.15300000	С	20.38700000	10.54400000 -2.97900000
С	15.90600000	10.68200000	3.70700000	С	19.87000000	10.44100000 -4.32000000
С	16.93400000	10.78400000	2.63200000	Н	20.48600000	10.32000000 -5.21200000
С	18.29600000	10.65300000	3.02400000	С	13.92600000	9.07800000 -4.39800000
С	18.79000000	10.42400000	4.35800000	Н	13.37000000	8.13500000 -4.43600000
Н	18.16200000	10.34400000	5.24800000	С	14.89500000	9.30700000 -3.38700000
0	12.59500000	11.20800000	7.64500000	Н	15.09500000	8.53900000 -2.62800000
Ν	17.25900000	10.79100000	0.12000000	С	18.07100000	10.62400000 -2.87300000
С	14.65200000	11.62300000	5.63100000	С	18.45400000	10.47500000 -4.25300000
Н	14.42800000	12.45300000	6.31200000	Н	17.75200000	10.38600000 -5.08400000
С	15.63200000	11.76200000	4.60900000	Zr	27.77500000	7.78500000 -8.43700000
Н	16.18600000	12.70400000	4.50500000	Ο	26.15600000	6.37600000 -9.32100000
С	16.45700000	10.86900000	1.28600000	Ο	28.48500000	9.76700000 -7.83900000
С	15.06300000	10.97900000	0.90800000	Ο	30.10500000	7.80600000 -8.28900000
Н	14.22700000	11.07700000	1.60500000	С	25.65500000	6.19400000 -10.53800000
0	25.81900000	10.81300000	-7.78600000	Ο	26.03800000	6.89900000 -11.61200000
С	25.49100000	9.77400000	-7.00000000	С	12.54200000	5.56600000 -9.00200000
С	24.54900000	9.96200000	-5.90500000	Ο	12.45600000	6.02500000 -10.25600000
С	23.95800000	11.24900000	-5.65400000	Ο	26.19100000	6.39700000 10.57300000
Н	24.22800000	12.09000000	-6.30300000	С	26.09400000	5.86700000 9.35700000
С	23.06300000	11.42500000	-4.56500000	Ο	13.05000000	7.39900000 11.10600000
Н	22.60700000	12.40900000	-4.38100000	С	13.38400000	6.77800000 9.97800000

0	26.81800000	6.26600000 8.31500000	0	27.35300000	25.81200000	7.58100000
Zr	30.94600000	7.72100000 10.60500000	Ν	27.94500000	21.20700000	-0.06700000
0	31.30500000	9.88100000 10.44900000	С	26.80200000	24.01000000	5.37200000
Zr	30.72300000	10.71600000 8.50900000	Н	25.96300000	24.30000000	6.01600000
0	28.73100000	10.08700000 7.89100000	С	26.61100000	23.12300000	4.27800000
Zr	30.63100000	10.09200000 -8.06500000	Н	25.61600000	22.69800000	4.07700000
0	31.42600000	9.38100000 -10.10600000	С	27.71900000	22.07800000	1.02900000
Zr	27.56500000	8.04700000 11.44500000	С	27.70100000	23.45200000	0.55800000
0	26.97900000	8.88800000 9.51700000	Н	27.53000000	24.32700000	1.18800000
0	29.34200000	11.65700000 9.97000000	С	28.77900000	13.05800000	7.06300000
Zr	30.69600000	7.41300000 -10.35100000	С	28.54500000	13.96000000	5.94300000
Zr	30.43000000	10.83900000 -11.41300000	С	29.58000000	14.21500000	4.97900000
Zr	27.58500000	8.56600000 -11.78100000	Н	30.56200000	13.74100000	5.10800000
Zr	27.54900000	11.14000000 -9.27900000	С	29.32900000	15.06600000	3.87400000
Zr	27.35000000	11.03900000 9.35000000	Н	30.12000000	15.26200000	3.13800000
Zr	29.91600000	10.80600000 11.91000000	С	28.05400000	15.70100000	3.69900000
0	30.50800000	5.89900000 11.96400000	С	27.87600000	16.68500000	2.59700000
0	32.05000000	12.40300000 9.35800000	С	27.76100000	18.04700000	2.99800000
0	30.03900000	11.81400000 -6.67400000	С	27.76200000	18.55400000	4.34700000
0	28.27300000	6.18800000 12.62100000	Н	27.84900000	17.93700000	5.24300000
0	32.47400000	11.43200000 -8.49900000	Ο	27.75800000	12.77200000	7.88700000
0	29.96700000	12.44300000 7.19300000	Ν	28.06800000	17.03300000	0.09600000
0	32.39400000	8.11800000 12.35800000	С	27.25600000	14.57300000	5.75600000
0	28.60600000	7.11900000 -10.48800000	Н	26.46000000	14.35300000	6.47800000
0	29.71500000	11.50400000 -9.51300000	С	27.01500000	15.43400000	4.65400000
0	26.80600000	9.16200000 -9.87900000	Н	26.03300000	15.91200000	4.53100000
0	29.56300000	8.64600000 12.07900000	С	27.93200000	16.21500000	1.24500000
0	10.83800000	9.87800000 -11.48800000	С	27.92600000	14.82100000	0.84800000
0	27.68600000	10.36300000 11.53800000	Н	27.81400000	13.97400000	1.52900000
Zr	30.48900000	27.57700000 8.16800000	О	27.87300000	25.85400000	-7.49500000
0	29.57700000	26.00700000 6.87000000	С	28.91200000	25.65300000	-6.66600000
0	31.35100000	27.90100000 10.11900000	С	28.81900000	24.63100000	-5.63500000
0	30.67300000	29.82000000 8.40300000	С	27.61600000	23.86100000	-5.48800000
Ν	27.65300000	19.16900000 2.14400000	Н	26.76900000	24.06900000	-6.15200000
С	28.34500000	25.46400000 6.74900000	С	27.51500000	22.87200000	-4.47700000
С	28.10500000	24.56200000 5.63500000	Н	26.57800000	22.31100000	-4.36600000
С	29.19200000	24.23600000 4.75400000	С	28.60800000	22.61700000	-3.58400000
Н	30.17900000	24.67800000 4.94100000	С	28.46800000	21.58000000	-2.52000000
С	28.99300000	23.35100000 3.66900000	С	28.11300000	22.02800000	-1.20900000
Н	29.83300000	23.07800000 3.01500000	С	27.93400000	23.41800000	-0.83800000
С	27.70900000	22.75700000 3.43600000	Н	27.99600000	24.26500000	-1.52500000
С	27.61700000	21.69100000 2.40100000	0	28.01600000	12.58000000	-7.56800000
С	27.61400000	20.35900000 2.90400000	С	28.97700000	12.64000000	-6.63400000
С	27.66500000	19.96700000 4.29000000	С	28.84300000	13.59400000	-5.54000000
Н	27.68200000	20.66100000 5.13200000	С	27.64400000	14.37300000	-5.39500000

Н	26.82100000	14.21200000	-6.10300000	Zr	27.91600000	30.06200000	11.69400000
С	27.52000000	15.30300000	-4.33300000	0	32.81200000	29.16100000	12.10100000
Н	26.59200000	15.87600000	-4.20600000	0	27.18500000	32.36300000	8.91600000
С	28.59300000	15.50200000	-3.40100000	0	26.36900000	30.15000000	-7.03600000
С	28.46800000	16.56200000	-2.36000000	0	31.84300000	27.12100000	12.76800000
С	28.19300000	16.16200000	-1.01400000	0	26.60800000	32.26800000	-9.26500000
С	28.07600000	14.78500000	-0.56300000	0	26.59000000	30.22200000	6.91700000
Н	28.11800000	13.90400000	-1.20800000	0	31.17200000	31.67200000	12.25500000
0	30.02400000	26.41700000	-6.75400000	0	31.53800000	28.53700000	-10.16800000
Ν	28.42500000	19.08600000	-2.09000000	0	26.89600000	29.39900000	-9.77300000
С	29.91600000	24.38100000	-4.74100000	0	29.57700000	26.75600000	-9.50900000
Н	30.83600000	24.96700000	-4.84500000	0	29.88100000	29.14000000	12.07700000
С	29.80400000	23.39100000	-3.72800000	0	28.24700000	10.65000000	-11.57600000
Н	30.63900000	23.20900000	-3.03600000	0	27.74700000	27.74400000	11.46200000
С	28.67700000	20.22000000	-2.89900000	0	11.79000000	29.37600000	6.48900000
С	29.13500000	19.72600000	-4.17300000	0	9.80600000	31.09900000	9.84000000
Н	29.44900000	20.36200000	-5.00200000	Ν	19.27300000	28.65700000	2.10500000
С	29.90100000	13.76000000	-4.58500000	С	12.62300000	28.32500000	6.46100000
Н	30.81300000	13.16200000	-4.69000000	С	13.63600000	28.28900000	5.41400000
С	29.77500000	14.70400000	-3.53100000	С	13.77600000	29.42800000	4.54900000
Н	30.59500000	14.85100000	-2.81400000	Н	13.10600000	30.28500000	4.69100000
С	28.66100000	17.90000000	-2.81900000	С	14.78900000	29.45500000	3.56400000
С	29.12100000	18.30500000	-4.12500000	Н	14.90900000	30.33600000	2.91900000
Н	29.41500000	17.61100000	-4.91400000	С	15.68300000	28.34700000	3.40200000
Zr	30.61600000	28.13900000	-8.09700000	С	16.76100000	28.40900000	2.37700000
0	28.56100000	28.64900000	-7.79100000	С	18.08800000	28.56800000	2.87000000
0	30.38900000	30.39800000	-8.39200000	С	18.47800000	28.69400000	4.25100000
С	32.94100000	12.01600000	-9.60100000	Н	17.78400000	28.67900000	5.09300000
0	32.34200000	11.93500000	-10.79700000	0	12.55500000	27.36200000	7.39200000
0	31.42600000	12.52600000	11.62000000	Ν	17.20200000	28.53100000	-0.12200000
С	32.13300000	12.94200000	10.57300000	С	14.52100000	27.17000000	5.24700000
Zr	31.26700000	30.07600000	10.62800000	Н	14.39700000	26.29300000	5.89400000
0	29.30200000	31.00300000	10.24700000	С	15.52700000	27.19800000	4.24600000
Zr	28.44300000	30.55600000	8.27600000	Н	16.19900000	26.33900000	4.10600000
0	28.55000000	28.42000000	7.80000000	С	16.35900000	28.37400000	1.00200000
Zr	28.06400000	30.69400000	-8.42900000	С	14.98800000	28.20700000	0.55900000
0	28.89500000	31.14600000	-10.55800000	Н	14.12900000	28.04500000	1.21500000
Zr	29.88600000	27.04100000	11.60900000	С	25.70400000	29.21700000	6.83000000
0	29.19700000	26.47800000	9.63700000	С	24.71800000	29.17500000	5.75500000
0	27.09800000	29.56300000	9.72800000	С	24.53600000	30.27400000	4.84900000
Zr	30.94800000	30.60600000	-10.48400000	Н	25.14300000	31.17700000	4.98500000
Zr	27.59100000	29.86500000	-11.74600000	С	23.57900000	30.19900000	3.80300000
Zr	30.14400000	27.39400000	-11.46100000	Н	23.43400000	31.05500000	3.12800000
Zr	27.43100000	27.35400000	-9.15500000	С	22.77400000	29.02300000	3.62600000
Zr	27.20100000	27.41600000	9.23700000	С	21.75400000	28.93500000	2.54400000

С	20.39100000	28.83400000	2.95300000	Н	25.06900000	31.05200000	-5.12100000
С	19.88600000	28.86100000	4.30300000	С	23.60300000	30.09200000	-3.80600000
Н	20.50100000	29.00000000	5.19300000	Н	23.43200000	30.98600000	-3.19200000
0	25.75500000	28.17500000	7.67600000	С	20.48000000	28.83600000	-2.94700000
Ν	21.37700000	28.88200000	0.03700000	С	20.07400000	28.94400000	-4.32700000
С	23.91300000	27.99600000	5.57800000	Н	20.75800000	29.06900000	-5.16800000
Н	24.07000000	27.14100000	6.24700000	0	11.71900000	32.40000000	-9.16700000
С	22.96900000	27.92300000	4.52600000	С	12.21500000	32.69900000	-10.36400000
Н	22.37200000	27.01200000	4.38900000	0	11.99000000	31.97000000	-11.46300000
С	22.21000000	28.92100000	1.18500000	С	26.05600000	32.48400000	-10.45500000
С	23.60100000	28.92100000	0.77200000	О	26.27700000	31.70500000	-11.52100000
Н	24.46000000	28.92500000	1.44800000	Ο	12.61300000	31.71400000	10.21600000
С	12.89900000	29.11100000	-6.91700000	С	12.63900000	32.20300000	8.97900000
С	13.87100000	29.01200000	-5.83600000	О	26.74000000	31.97300000	11.18500000
С	14.62000000	27.79600000	-5.66900000	С	26.62300000	32.69600000	10.07500000
Н	14.43700000	26.96200000	-6.35700000	О	11.82700000	31.80300000	8.00400000
С	15.55800000	27.66800000	-4.61600000	Zr	11.24300000	30.15500000	11.24500000
Н	16.12900000	26.73800000	-4.49500000	О	11.66000000	29.22600000	9.31200000
С	15.77800000	28.74500000	-3.69700000	О	8.44800000	32.45900000	11.89000000
С	16.80300000	28.65100000	-2.62100000	Ο	10.71200000	32.09500000	12.38700000
С	16.36600000	28.49600000	-1.26700000	Ο	6.51200000	30.35100000	12.51800000
С	14.99200000	28.28900000	-0.85600000	О	9.46800000	31.29000000	-10.43800000
Н	14.13800000	28.20000000	-1.53300000	О	9.27700000	29.67500000	12.05700000
0	25.85400000	27.93000000	-7.58600000	Ο	28.00900000	27.72100000	-11.50800000
С	25.66400000	29.02200000	-6.82500000	О	11.03900000	27.84300000	11.43300000
С	24.72200000	28.97400000	-5.71400000	С	9.59400000	32.81100000	12.46500000
С	24.00600000	27.76400000	-5.41200000	Ο	7.25500000	28.34800000	13.48900000
Н	24.18600000	26.87200000	-6.02400000	С	6.47700000	29.42700000	13.47200000
С	23.09300000	27.73000000	-4.32800000	С	9.93700000	5.97000000	13.07200000
Н	22.53500000	26.81200000	-4.10300000	Ο	10.89500000	6.89200000	13.03300000
С	22.86900000	28.89400000	-3.51800000	С	6.11200000	8.67100000	13.06600000
С	21.82100000	28.86100000	-2.46100000	С	32.83200000	28.02100000	12.78700000
С	22.23400000	28.87100000	-1.09000000	Ο	28.96400000	31.60600000	13.05500000
С	23.61500000	28.88900000	-0.64600000	С	30.20600000	32.08100000	13.07600000
Н	24.48900000	28.86600000	-1.30200000	С	32.45400000	9.07800000	13.27400000
0	12.12500000	30.20800000	-7.03100000	О	31.63100000	10.12100000	13.31000000
Ν	19.29700000	28.71200000	-2.18300000	С	29.42700000	5.52600000	12.64300000
С	14.08300000	30.09000000	-4.91200000	Zn	19.17400000	19.33400000	0.67900000
Н	13.51300000	31.01800000	-5.03600000	Ν	19.39700000	19.12100000	-1.36600000
С	15.01700000	29.95100000	-3.85400000	Ν	25.08100000	19.03800000	-4.48100000
Н	15.18500000	30.78100000	-3.15400000	Ν	18.95600000	19.22700000	2.75600000
С	18.16400000	28.75200000	-3.03000000	С	16.41900000	19.32300000	2.90600000
С	18.65600000	28.90100000	-4.37600000	Ν	17.10200000	19.06700000	0.48100000
Н	18.02400000	28.97600000	-5.26300000	С	21.39300000	19.11500000	3.44900000
С	24.51700000	30.13300000	-4.89000000	Ν	21.24400000	19.07700000	0.91700000

С	16.96400000	18.98400000	-2.05300000	Н	19.98800000	19.62400000	5.95200000
Ν	24.22000000	19.04800000	6.72700000	Н	15.50100000	16.75400000	-2.71800000
Ν	13.14100000	20.05900000	5.64800000	Н	13.87200000	19.05200000	1.48100000
С	20.62300000	19.18100000	-2.08400000	Н	21.37300000	17.46300000	5.67000000
С	19.42100000	19.51300000	5.02700000	Н	24.17200000	20.71200000	-1.63700000
С	15.33300000	17.59400000	-3.40300000	Н	21.09200000	19.38300000	-4.28200000
С	16.04900000	18.82400000	-3.21400000	Н	22.28100000	17.27700000	-3.58900000
С	19.99800000	19.26900000	3.72300000	Н	24.41800000	18.49600000	-0.10100000
С	14.81400000	19.01900000	0.93300000	Н	15.89500000	21.61200000	4.32800000
С	22.20000000	18.18400000	5.67300000	Н	24.11600000	18.48200000	2.60900000
С	24.12900000	19.96000000	-2.43500000	Н	12.40400000	18.12300000	5.17700000
С	20.34000000	19.28200000	-3.49600000	Н	24.13000000	17.34800000	-5.35300000
С	23.04400000	19.02300000	-2.49100000	Н	16.31200000	20.85200000	-4.02400000
С	17.73100000	19.39000000	3.46500000	Н	18.37200000	19.24100000	-4.58800000
С	23.05800000	18.04800000	-3.54800000	Н	14.18800000	18.79100000	-1.21600000
С	23.50300000	18.69500000	0.45800000	Н	17.26900000	19.75400000	5.64400000
С	15.29700000	19.55400000	3.85200000	Н	13.96600000	21.99900000	5.95800000
С	15.17200000	20.81100000	4.53100000	Н	23.60800000	20.75500000	3.81800000
С	21.95400000	18.96400000	2.14400000	Н	23.07500000	17.46400000	7.57600000
С	21.92900000	19.06600000	-1.52000000	Н	13.84300000	16.53600000	-4.64500000
С	23.34600000	18.68700000	1.86200000	Н	25.99400000	20.63200000	-3.41200000
С	13.21600000	18.83100000	4.97300000	Н	26.75100000	19.94200000	-5.41600000
С	18.35600000	19.12000000	-2.33500000	Н	26.61500000	18.15900000	-5.65900000
С	24.07200000	18.06500000	-4.52500000	Н	25.49600000	19.27200000	-6.55000000
С	22.34200000	19.11300000	4.58600000	Н	14.33500000	17.58500000	3.59700000
С	15.80000000	19.88900000	-4.14100000	Н	12.11900000	21.29800000	7.03000000
С	18.93500000	19.22200000	-3.65400000	Н	11.99800000	19.51800000	7.36000000
С	16.39000000	18.94600000	-0.74600000	Н	11.05700000	20.26600000	6.00400000
С	14.97500000	18.88800000	-0.46600000	Н	14.59700000	20.52900000	-5.88500000
С	18.01800000	19.58400000	4.86700000	Н	25.24000000	20.64500000	5.76400000
С	14.10500000	21.05300000	5.42300000	Н	24.98600000	18.20400000	8.51400000
Ν	14.16800000	18.52100000	-5.33400000	Н	25.25700000	19.98600000	8.33600000
С	22.20700000	18.96600000	-0.12500000	Н	26.23900000	18.81800000	7.35900000
С	23.45500000	20.02300000	4.62100000	Н	12.66900000	17.41700000	-6.34500000
С	23.13600000	18.15800000	6.72800000	Н	12.37800000	19.19300000	-6.26300000
С	14.41100000	17.45200000	-4.45900000	Н	13.63600000	18.53200000	-7.39900000
С	25.13600000	19.95300000	-3.42100000	Ι	21.83500000	22.70400000	1.88100000
С	16.13200000	19.11800000	1.51800000	Ι	21.63700000	15.72300000	-0.51200000
С	26.04800000	19.11000000	-5.59900000	Ι	17.72500000	15.57600000	0.50600000
С	14.28800000	18.56100000	4.09400000	Ι	17.75800000	22.61600000	1.85900000
С	12.00700000	20.30100000	6.56900000	Н	5.18400000	24.97400000	-9.76800000
С	14.86300000	19.73100000	-5.18300000	Н	30.45400000	32.85700000	13.82000000
С	24.36900000	19.98300000	5.69100000	Н	5.31400000	8.47300000	13.80400000
С	25.23800000	19.01100000	7.80200000	Н	5.77400000	29.57600000	14.31200000
С	13.15100000	18.40900000	-6.40700000	Н	5.67200000	24.69400000	11.13700000

Н	4.78200000 12.79200000 9.93200000	Н	19.32000000 28.62800000 1.07600000
Н	33.87700000 12.59500000 -9.52800000	Н	19.31800000 10.73500000 -1.09600000
Н	33.71100000 27.80300000 13.41800000	Н	19.37900000 10.76700000 1.14400000
Н	10.04700000 5.14200000 13.79600000	Н	10.29300000 19.15700000 -1.23900000
Н	13.22000000 4.71800000 -8.80400000	Н	10.08800000 19.08900000 0.99300000
Н	29.49300000 4.61300000 13.26000000	Н	28.12800000 19.12700000 -1.10500000
Н	33.23200000 8.99700000 14.05600000	Н	27.70200000 19.12700000 1.11600000
Н	14.30700000 6.17400000 9.97200000	Н	12.85000000 33.59700000 -10.45900000
Н	5.37200000 12.88600000 -11.07000000	Н	32.82800000 13.78800000 10.72200000
Н	24.87700000 5.42300000 -10.68500000	Н	25.37900000 33.34800000 -10.57400000
Н	9.62000000 33.75600000 13.03400000	Н	25.37000000 5.04800000 9.19900000
Н	26.04000000 33.63100000 10.12000000	Н	13.38000000 32.98800000 8.74600000
Н	19.25500000 28.64200000 -1.15600000		

References

- (1). (a) M. Natali, A. Luisa, E. Iengo and F. Scandola, Chem. Commun., 2014, 50, 1842-
- 1844; (b) D. Feng, Z. -Y. Gu, J. -R. Li, H. -L. Jiang, Z. Wei and H. -C. Zhou, Angew. Chem.
- Int. Ed., 2012, 51, 10307-10310; (c) M. S. Deenadayalan, N. Sharma, P. K. Verma and C. M.

Nagaraja, Inorg. Chem., 2016, 55, 5320-5327.

(2). (a) Y.-Z. Chen, Z. U. Wang, H. Wang, J. Lu, S. -H. Yu and H. -L. Jiang; J. Am. Chem.

Soc., 2017, 139, 2035-2044; (b) D. Feng, W. -C. Chung, Z. Wei, Z. -Y. Gu, H. -L. Jiang, Y. -

P. Chen, D. J. Darensbourg and H. -C. Zhou, J. Am. Chem. Soc., 2013, 135, 17105-17110.

(3). H. Pan, J. A. Ritter and P. B. Balbuena, *Langmuir*, 1998, 14, 6323-6327.

(4). (a) R. T. Yang, Gas Separation by Adsorption Processes, Butterworth, Boston, 1997; (b)

B. Ugale, S. S. Dhankhar and C. M. Nagaraja, Cryst. Growth Des., 2017, 17, 3295-3305; (c)

S. S. Dhankhar and C. M. Nagaraja, RSC Adv., 2016, 6, 86468-86476; (d) N. Sikdar, A.

Hazra and T. K. Maji, Inorg. Chem., 2014, 53, 5993-6002.

(5). (a) J. Liang, R. -P. Chen, X. -Y. Wang, T. -T. Liu, X. -S. Wang, Y. B. Huang and R. Cao, *Chem. Sci.*, 2017, **8**, 1570-1575; (b) X. Zhoua, Y. Zhang, X. Yang, L. Zhaoa and G. Wang, *J.*

Mol. Catal. A: Chem., 2012, 361-362, 12-16; (c) Y. -H. Han, Z. -Y. Zhou, C. -B. Tiana and S.

-W. Du; *Green Chem.*, 2016, **18**, 4086-4091; (d) B. Ugale, S. Kumar, T. J. D. Kumar and C. M. Nagaraja, *Inorg. Chem.*, 2019, **58**, 3925-3936.

(6). (a) D. Ma, B. Li, K. Liu, X. Zhang, W. Zou, Y. Yang, G. Li, Z. Shi and S. Feng, *J. Mater. Chem. A*, 2015, **3**, 23136-23142; (b) M. Ding and H. -L. Jiang, *ACS Catal.*, 2018, **8**, 3194-3201; (c) Y. Sun, H. Huang, H. Vardhan, B. Aguila, C. Zhong, J. A. Perman, A. M. A. -Enizi, A. Nafady, and S. Ma; *ACS Appl. Mater. Interfaces*, 2018, **10**, 27124–27130; (d) B. Aguila, Q. Sun, X. Wang, E. O'QRourke, A. M. A. -Enizi, A. Nafady and S. Ma, *Angew. Chem. Int. Ed.*, 2018, **57**, 10107-10111; (e) J. Tharun, K. -M. Bhin, R. Roshan, D. W. Kim, A. C. Kathalikkattil, R. Babu, H. Y. Ahn, Y. S. Won and D. -W. Park, *Green Chem.*, 2016, **18**, 2479-2487; (f) L. -G. Ding, B. -J. Yao, W. -L. Jiang, J. -T. Li, Q. -J. Fu, Y. -A. Li, Z. -H. Liu, J. -P. Ma, and Y. -B. Dong; *Inorg. Chem.*, 2017, **56**, 2337–2344; (g) T. Jose, Y. Hwang, D. -W. Kim, M. -I. Kim and D. -W. Park, *Catal. Today*, 2015, **245**, 61-67; (h) T. Wang , X. Song, Q. Luo, X. Yang, S. Chong, J. Zhang and M. Ji, *Micropor. Mesopor. Mater.*, 2018, **267**, 84-92; (i) J. Liang, Y. -Q. Xie, Q. Wu, X. -Y. Wang, T. -T. Liu, H. -F. Li, Y. -B. Huang, and R. Cao *Chem. Commun.*, 2018, **54**, 342-345; (k) T. -T. Liu, J. Liang, R. Xu, Y. -B. Huang and R. Cao, *Chem. Commun.*, 2018, **55**, 4063-4066.