Supporting Information

Control loading Au nanoparticles on the surface of hydroxyl pillar[5]arene functionalized single-walled carbon nanotube and its application for catalysis and sensing

Timur Borjigin,^a Genfu Zhao,^a Yuhao Zhang,^a Mengfang Liang,^a Beihong Liu,^a Hui Liu,^a Xiaofei Yang^{*b} and Hong Guo^{*a}

^aSchool of Materials Science and Engineering, Green Energy Key Laboratory of All-Solid Ion Battery in Yunnan Province University, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, China.

^bDepartment of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.

*Corresponding Author

E-mail: guohongcom@126.com (H. Guo)

S1. Reagents and methods: 1,4-Bis(2-hydroxyethoxy)benzene, dichloroethane, boron trifluoride diethyl etherate, carbon tetrabromide, triphenylphosphine, acetonitrile, paraformaldehyde, were reagent grade and used as received. Solvents were either employed as purchased or driedaccording to procedures described in the literature. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance DMX-400 spectrometer at 400 MHz and 600 MHz. HP5^{S1,2} was synthesized according to the previous papers procedures.

Scheme S1. Synthetic route of HP5.

The ¹H NMR spectrum of **2** is shown in Figure S1. ¹H NMR (400 MHz, CDCl₃, rt) δ (ppm): 6.857 (s, 4H), 4.239 (t, J = 4.0 Hz, 4H), 3.608 (t, J = 4 Hz, 4H). The ¹³C NMR spectrum of **2** is shown in Figure S2. ¹³C NMR (100 MHz, CDCl₃, rt) δ (ppm): 151.93, 114.79, 67.61, 28.21. The ¹H NMR spectrum of **3** is shown in Figure S3. ¹H NMR (600 MHz, CDCl₃, rt) δ (ppm): 6.914 (s, 10H), 4.226 (t, J = 5.4 Hz, 20H), 3.844 (s, 10H), 3.632 (t, J = 5.4 Hz, 20H). The ¹³C NMR spectrum of **3** is shown in Figure S4. ¹³C NMR (125 MHz, CDCl₃, rt) δ (ppm): 149.71, 129.21, 116.26, 69.13, 30.70, 29.64. The ¹H NMR spectrum of **HP5** is shown in Figure S5. ¹H NMR (600 MHz, D₂O, rt) δ (ppm): 6.948 (s, 10H), 4.494 (s, 20H), 3.982-3.894 (m, 50H), 3.584 (s, 20H), 3.246 (s, 60H). The ¹³C NMR spectrum of **HP5** is shown in Figure S6. ¹³C NMR (100 MHz, CDCl₃, rt) δ (ppm): 149.65, 128.79 115.96, 66.48, 63.66, 62.99, 55.32, 52.26, 29.83.

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 2.

S4

Figure S6. ¹³C NMR spectrum (125 MHz, D₂O, 298 K) of HP5.

Figure S7. The photographs of SWCNT and HP5@SWCNT complexes in water.

Figure S8. The TEM of Au@HP5 (A) and Au@SWCNT (B), respectively.

Figure S9. High resolution XPS spectra of N 1s for Au@HP5@SWCNT.

Figure S10. Chemical structures of *p*-DNB, *m*-DNB (a), *o*-DNB (b), *p*-nitrophenol (c), *m*-nitrophenol (d), *o*-nitrophenol (e), nitrobenzene (f), *p*-nitrotoluene (g),
hydroquinone (h), *p*-nitroaniline (i), *m*-nitroaniline (j), *o*-nitroaniline (k), respectively.

Table S1

Sample	Added (µM)	Found (µM)	RSD (%)	Recovery (%)
Tap water	0	-	-	-
	1	0.98 ± 0.01	1.0	98
	2	1.97 ± 0.11	5.5	98.5
Waste water	4	4.01 ± 0.21	5.2	100.2
	0	-	-	-
	1	1.01 ± 0.04	3.9	101
	2	2.12 ± 0.12	5.6	106
	10	9.78 ± 0.26	2.6	97.8

Determination of *p*-DNB in tap water and waste water samples.

References

S1. R. Joseph, A. Naugolny, M. Feldman, I. M. Herzog, M. Fridman and Y. Cohen, J. Am. Chem. Soc., 2016, **138**, 754–757.

S2. Y. J. Ma, X. F. Ji, F. Xiang, X. D. Chi, C. Y. Han, J. M. He, Z. Abliz, W. X. Chen and F. H. Huang, *Chem. Commun.*, 2011, **47**, 12340–12342.