
Synthesis and Hydrogen Evolving Catalysis of a Panchromatic Photochemical Molecular Device

Johannes Habermehl, ^{+a} Djawed Nauroozi, ^{+a} Miłosz Martynow, ^b Yury E. Vilk, ^c Radim Beranek, ^c Julien Guthmuller, ^b Sven Rau^{*a}

Table of Contents

Experimental Part	р2
Synthetic Procedures	р3
NMR Spectra	р3
Mass spectrometry	р6
Photocatalytic Activity	р7
Absorption Spectra	р8
Cyclic voltammetry	р9
Spectroelectrochemical Data	p10
Irradiation Setup	p11
DFT Calculations	p12

Experimental Part

Materials and Devices

The synthesis of **Ostpphz** is described elsewhere.^[7] The syntheses of the sacrificial electron donors BIH and BNAH were performed following literature procedures with minor variations.^[10] Acetonitrile was purchased from VWR (HPLC grade) and purified with a MBraun MB-SPS-800 solvent drying system. Triethylamine was purchased from Carl Roth (spectroscopic grade). ¹H and ¹³C NMR spectra were recorded with a Bruker 400 MHz spectrometer, UV-Vis spectra with a Jasco V-670 Spectrophotometer. ESI mass spectra were recorded with a Bruker solariX hybrid 7T FT-ICR. Chromatograms were on a Bruker Scion SQ gaschromatograph with a Restek ShinCarbon ST column with different mixtures of hydrogen and argon as reference.

Photocatalytical measurements

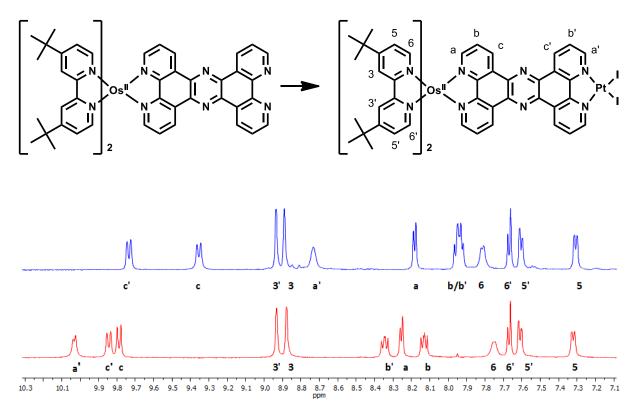
Photocatalytic experiments were carried out in a home-built air-cooling apparatus for maintaining 25 °C under constant irradiation of a Schlenk-vessel (ESI S9). All samples were prepared under inert conditions, dried and degassed (1 min per 1 mL) acetonitrile and degassed demineralized water was used. Concentration of the mixtures was 1.08×10^{-5} mol/L for **OsPt** and 1.08×10^{-2} mol/L for the electron donors in 10 mL catalytic mixtures. In addition the samples were prepared in schlenk-tubes with a headspace-solution ratio of 11/10 in the dark under argon stream. As light sources two blue LED lights (each 470 nm ± 15 nm, P = 35 mW ± 5 mW) were used. After specific time, 100 µL samples were drawn from the headspace and injected immediately into the GC apparatus. Hydrogen measurements and irradiation experiments were performed several times.

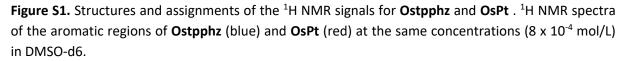
For the excitation with a broad band light source, some changes of the conditions above were made. Due to a different reactor geometry, 20 mL of the catalytic mixtures were used and the headspace-solution ratio was 11/20 (see ESI S8). The used light-source was a 150 W Xe lamp from LOT Oriel, with cut-off filters at > 450 nm, > 550 nm and < 500 nm purchased from Edmund optics.

UV-Vis measurements under catalytic conditions

The catalytic mixture was prepared as mentioned before and transferred to an UV-Vis cuvette. The sample was irradiated with a LED light stick (470 nm \pm 15 nm, P = 35 mW \pm 5 mW) in an apparatus with vents for remaining room temperature (25° C). After certain amounts of time an UV-Vis spectrum was measured with a mixture of acetonitrile: water (9:1) as a baseline.

Theoretical Section


To reduce the computational cost of the calculations without affecting the spectroscopic properties, the structure of the complexes were simplified by replacing the *tert*-butyl groups by methyl groups. The geometries of the singlet ground state were calculated by means of density functional theory (DFT) with the functional B3LYP. Harmonic vibrational frequencies were computed to confirm that the optimized structures correspond to minima on the potential energy surface. The 28-electron, 46-electron and 60-electron relativistic effective core potentials MWB were used with their basis sets for the ruthenium, iodine, osmium and platinum atoms, respectively. The 6-31G(d) basis set was employed for the ligands. The vertical excitation energies of the singlet and triplet excited states were obtained from time-dependent (TD) DFT calculations with the same functional, pseudopotential and basis set. The effects of the interaction with a solvent (acetonitrile, $\varepsilon = 35.688$, n = 1.344) on the


geometries and excitation energies were taken into account by the polarizable continuum model (PCM). The nonequilibrium procedure of solvation was used for the calculation of the excitation energies. All the computations were performed with Gaussian 09^[18].

Synthetic Procedures

[Os(tbbpy)₂(**tpphz)Ptl**₂](**PF**₆)₂ (**OsPt**). [Os(tbbpy)₂(tpphz)](PF₆)₂ (76.0 mg, 54.2 μmol) and (DMSO)₂Ptl₂ (50.0 mg, 82,26 μmol) were suspended in ethanol (100 mL) and heated at 85 °C for 18 h. The volume of the resulting black solution was concentrated to one third (ca. 30 mL) with the rotary evaporator and treated with a saturated solution of (NH₄)(PF₆) in water. The precipitate was washed with water (100 mL) and diethyl ether (20 mL). Yield was 78 % (78 mg). ¹H NMR (400 MHz, DMSO-d₆) δ [ppm]: 10.03 (s, 2H), 9.85 (d, *J* = 7.6 Hz, 2H), 9.79 (d, *J* = 7.6 Hz, 2H), 8.93 (s, 2H), 8.88 (s, 2H), 8.43 - 8.31 (m, 2H), 8.25 (d, *J* = 4.5 Hz, 2H), 8.18 – 8.08 (m, 2H), 7.75 (s, 2H), 7.67 (d, *J* = 5.5 Hz, 2H), 7.61 (d, *J* = 4.6 Hz, 2H), 7.32 (d, *J* = 4.9 Hz, 2H), 1.47 (s, 18H), 1.35 (s, 18HM) ¹³C NMR (500 MHz, DMSO-d₆) δ [ppm]: 161.93, 161.41, 158.71, 158.39, 153.90, 153.39, 153.12, 151.64, 150.36, 149.31, 141.73, 138.12, 136.53, 134.12, 130.64, 129.03, 128.85, 128.67, 125.75, 125.63, 122.56, 122.44, 35.89, 35.74, 30.75, 30.59 MS (ESI): 780.11 ([M-2PF₆]²⁺)

NMR Spectra

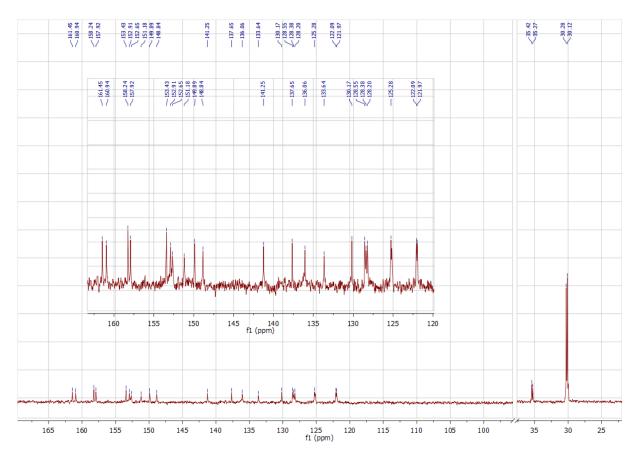
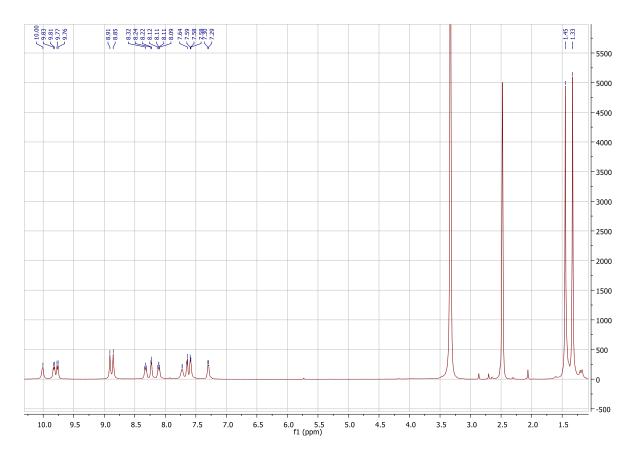



Figure S2. ¹³C NMR spectrum of OsPt in DMSO-d6.

Figure S3. ¹H NMR spectrum of **OsPt** in DMSO-d6 at a concentration of 8 x 10⁻⁴ mol/L.

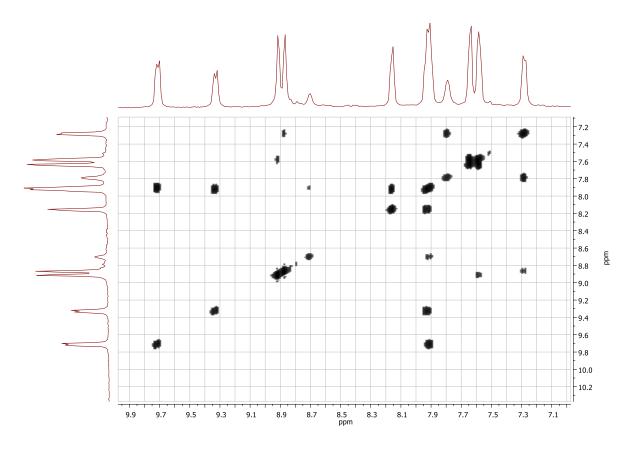
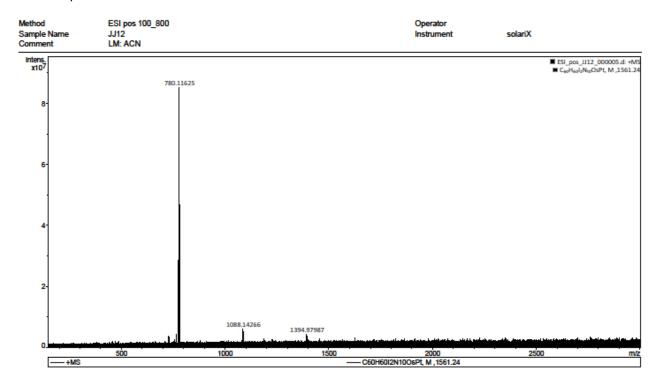
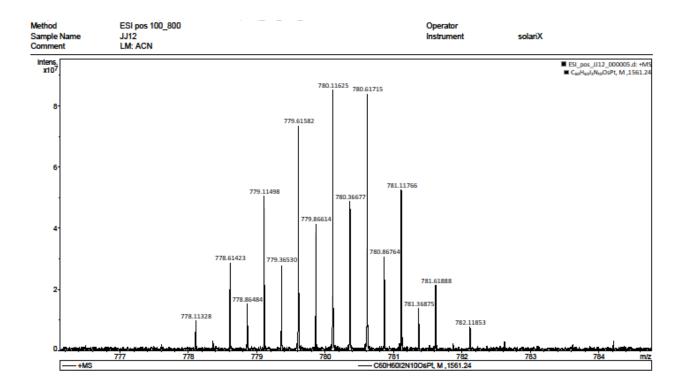
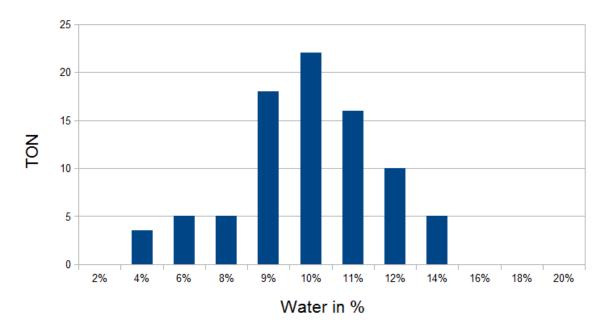
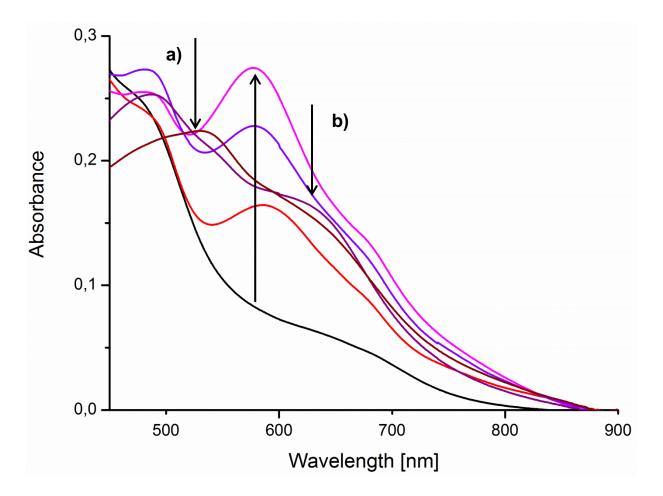




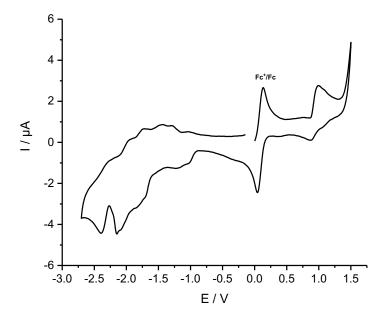
Figure S4. H-H COSY spectrum of OsPt in DMSO-d6 at a concentration of 8 x 10⁻⁴ mol/L.


Mass Spectrometry

MS: ESI – positive mode



Photocatalytic Activity


Figure S5. Photo catalytic activity of **OsPt** in relation with water content (BNAH as e⁻donor).

Absorption Spectra

Figure S6. UV-Vis in the catalytic mixture with irradiation at 470 nm. Spectra at different times of irradiation. Starting with the black spectrum without irradiation a band emerges at 590 nm (orange spectrum, 15 min; violet, 45 min) with a maximum intensity after 2h (pink). After completion of the catalysis two bands appear, one at 520 nm (a) and a second at 640 nm (b).

Cyclic voltammetry

Figure S7: Cyclic voltammogram of RuPt in MeCN containing *n*Bu₄NPF₆ as electrolyte with a glassy carbon electrode as working electrode, Ag/AgCl as reference electrode and Pt wire as counter electrode. Scan rate: 100 mV s⁻¹. All data are referenced against Fc⁺/Fc.

Spectroelectrochemical Data

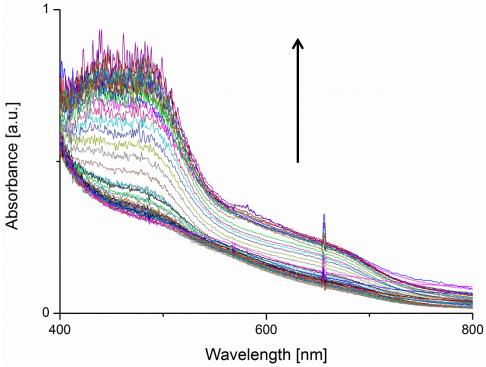


Figure S8. Spectroelectrochemistry of Ostpphz (reduction).

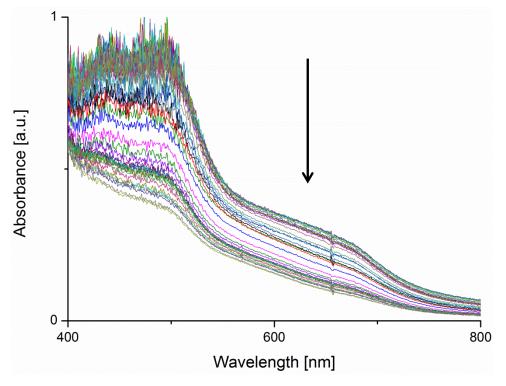


Figure S9. Spectroelectrochemistry of Ostpphz (re-oxidation).

Irradiation Setup

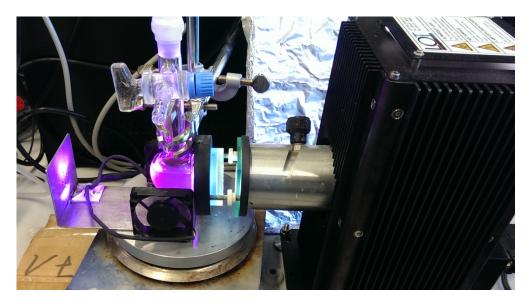


Figure S10. Setting for irradiation with a 150 W Xenon lamp with different cut-off filters.

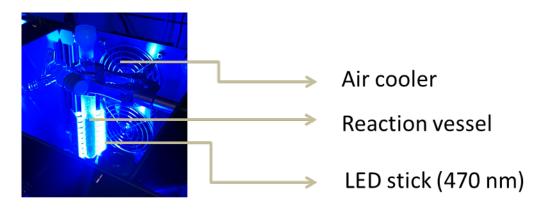


Figure S11. Apparatus for irradiation with blue light (470 nm).

DFT Calculations

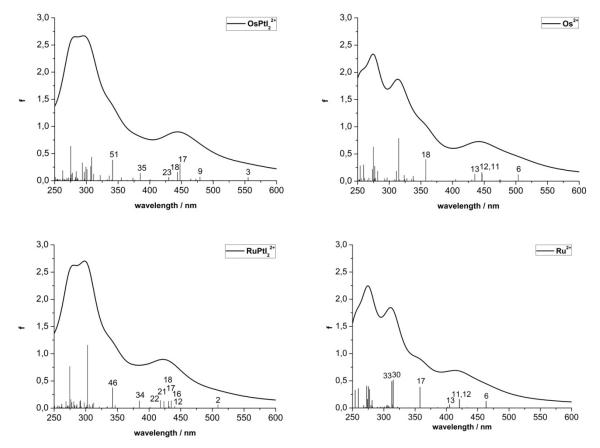


Figure S12. Calculated absorption spectra of OsPt, Ostpphz, RuPt and Rutpphz

State number	Transition	Weight (%)	E^e (eV)	λ (nm)	f	$\left< S^2 \right>$
S3	218 ->221	93	2.23	555	0.061	0.000
S8	219 ->224	79	2.49	498	0.014	0.000
	219 ->226	9				
	219 ->221	8				
S9	218 ->224	60	2.59	479	0.071	0.000
	219 ->223	22				
	218 ->226	10				
S10	219 ->223	68	2.62	472	0.030	0.000
	218 ->226	13				
	218 ->224	12				
S11	219 ->226	42	2.63	472	0.013	0.000
	218 ->227	32				
	218 ->223	15				
	219 ->224	8				
S15	218 ->223	78	2.67	464	0.035	0.000
	219 ->226	8				
	218 ->227	5				

Table S1. Calculated singlet excited state properties of OsPt

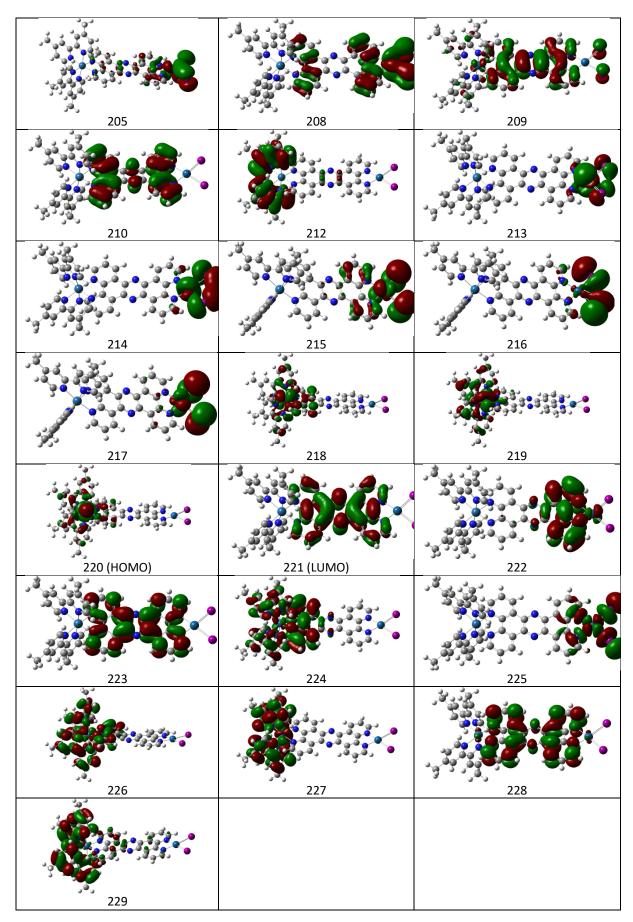
S17	219 ->227	46	2.77	447	0.312	0.000
	218 ->226	29				
	218 ->224	14				
S18	218 ->227	60	2.79	443	0.157	0.000
	219 ->226	34				
S21	218 ->222	82	2.84	436	0.011	0.000
	215 ->225	9				
S23	215 ->221	88	2.88	429	0.065	0.000
S31	216 ->225	94	3.10	400	0.025	0.000
S35	215 ->222	68	3.22	384	0.138	0.000
	217 ->223	21				
S38	215 ->223	93	3.29	376	0.015	0.000
S39	220 ->228	84	3.32	373	0.053	0.000
S41	220 ->229	96	3.40	364	0.010	0.000
S44	219 ->228	90	3.49	354	0.059	0.000
S51	209 ->221	61	3.63	341	0.381	0.000
	212 ->221	21				
	210 ->223	9				

Table S2. Calculated triplet excited state properties of OsPt

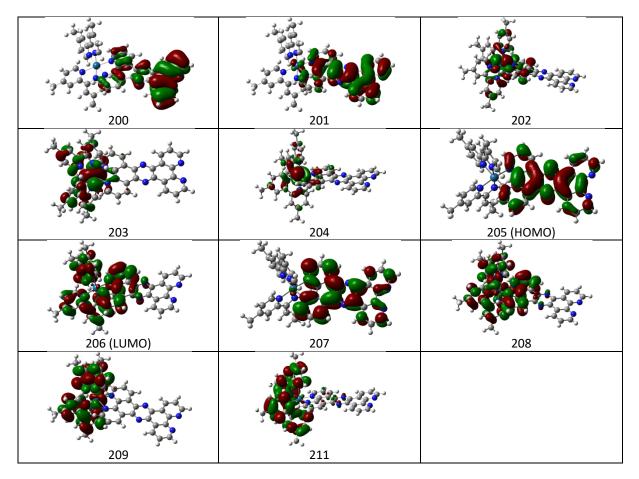
State number	Transition	Weight (%)	E^{e} (eV)	λ (nm)	f	$\left< S^2 \right>$
T1	220 ->221	58	1.96	633	0.000	2.000
	220 ->224	26				
	220 ->226	9				
T2	217 ->225	62	2.11	586	0.000	2.000
	213 ->225	20				
	208 ->225	8				
Т3	218 ->221	34	2.12	585	0.000	2.000
	218 ->224	28				
	218 ->226	20				
T4	220 ->221	33	2.12	585	0.000	2.000
	220 ->224	31				
	220 ->226	9				
T5	213 ->225	61	2.14	580	0.000	2.000
	217 ->225	19				
	214 ->225	13				
T6	218 ->221	49	2.20	563	0.000	2.000
	220 ->223	12				
	218 ->224	12				
	218 ->226	11				
T7	219 ->221	56	2.20	562	0.000	2.000
	220 ->224	14				
	219 ->224	11				
	220 ->226	9				
Т8	220 ->226	57	2.22	558	0.000	2.000
	219 ->221	21				
	220 ->224	12				
Т9	220 ->227	85	2.24	553	0.000	2.000
T10	215 ->225	85	2.30	538	0.000	2.000
	205 ->225	11				

State number	Transition	Weight (%)	E^{e} (eV)	λ (nm)	f	$\langle S^2 \rangle$
S6	202 ->205	80	2.46	503	0.124	0.000
	202 ->206	14				
S8	203 ->206	41	2.61	475	0.025	0.000
	202 ->209	31				
	203 ->208	19				
S9	204 ->207	47	2.62	473	0.026	0.000
	202 ->206	24				
	202 ->208	21				
S11	203 ->207	30	2.78	446	0.132	0.000
	203 ->209	28				
	202 ->208	19				
	202 ->206	13				
S12	202 ->209	49	2.78	446	0.163	0.000
	203 ->208	41				
S13	203 ->207	60	2.85	435	0.130	0.000
	203 ->209	30				
S14	202 ->207	92	2.88	430	0.026	0.000
S15	202 ->208	47	3.06	404	0.031	0.000
	203 ->209	26				
	203 ->207	5				
S16	204 ->211	97	3.38	367	0.010	0.000
S18	200 ->205	85	3.47	357	0.400	0.000
	201 ->207	10				

Table S3. Calculated singlet excited state properties of Ostpphz


Table S4. Calculated singlet excited state properties of RuPt

State number	Transition	Weight (%)	E^e (eV)	λ (nm)	f	$\langle S^2 angle$
S2	218 ->221	95	2.44	508	0.065	0.000
S12	219 ->223	70	2.81	440	0.034	0.000
	218 ->224	21				
S16	218 ->224	39	2.85	434	0.137	0.000
	218 ->226	32				
	219 ->223	16				
S17	218 ->223	56	2.87	431	0.032	0.000
	219 ->226	22				
	218 ->227	14				
S18	215 ->221	81	2.88	430	0.129	0.000
	218 ->226	7				
S21	219 ->227	39	2.93	423	0.128	0.000
	218 ->226	23				
	218 ->224	19				
	219 ->223	7				
	215 ->221	5				
S22	218 ->227	53	2.97	418	0.144	0.000
	219 ->226	42				
S29	216 ->225	96	3.09	401	0.021	0.000
S34	215 ->222	72	3.22	384	0.134	0.000
	217 ->223	22				
S35	215 ->223	94	3.30	375	0.016	0.000
S45	220 ->228	88	3.58	346	0.052	0.000
S46	210 ->221	61	3.62	342	0.376	0.000
	212 ->221	23				


209 ->223	9		

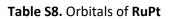

State number	Transition	Weight (%)	E^e (eV)	λ (nm)	f	$\langle S^2 \rangle$
S6	203 ->205	82	2.68	463	0.126	0.000
	203 ->206	11				
S11	203 ->206	34	2.95	420	0.160	0.000
	202 ->209	25				
	202 ->207	18				
	203 ->205	7				
	203 ->208	6				
	204 ->207	5				
S12	202 ->208	47	2.95	420	0.158	0.000
	203 ->209	39				
	202 ->206	5				
	203 ->207	5				
S13	202 ->207	66	3.06	404	0.067	0.000
	202 ->209	28				
S14	203 ->207	83	3.09	401	0.018	0.000
	203 ->209	12				
S17	200 ->205	86	3.47	357	0.386	0.000
	201 ->207	10				
S25	202 ->211	90	3.85	322	0.021	0.000
S30	204 ->214	44	3.94	315	0.533	0.000
	201 ->207	32				
S31	204 ->215	74	3.96	313	0.025	0.000
	201 ->206	7				
S32	201 ->206	42	3.96	313	0.074	0.000
	200 ->207	14				
	195 ->205	13				
	204 ->215	12				
S33	201 ->207	41	3.96	312	0.474	0.000
	204 ->214	19				
	202 ->213	7				
	200 ->205	5				
	202 ->214	5				

Table S6. Orbitals of OsPt

Table S7. Orbitals of Ostpphz

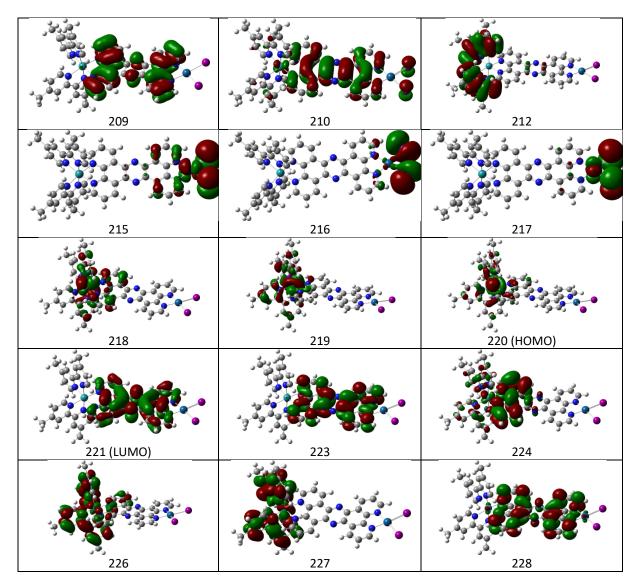
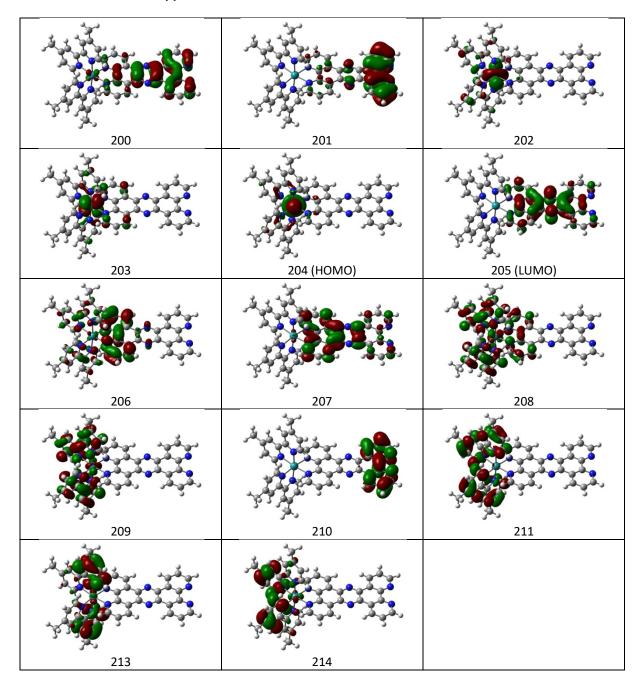



Table S9. Orbitals of Rutpphz

