Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Supplementary information

Exploring the formation of formamidinium-based hybrid perovskites by antisolvent methods: *in situ* GIWAXS measurements during spin coating

Rodrigo Szostak,^{a,b} Paulo E. Marchezi,^a Adriano dos Santos Marques,^a Jeann Carlos da Silva,^a Matheus Serra Holanda,^a Márcio Mediros Soares,^b Hélio Cesar Nogueira Tolentino^{*b} and Ana Flávia Nogueira ^{*a}

 ^a University of Campinas (UNICAMP), Laboratório de Nanotecnologia e Energia Solar, Chemistry Institute, Campinas, PO Box 6154, 13083-970, Brazil.
^b Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970, Brazil.

* Corresponding authors: anafla@unicamp.br and helio.tolentino@Inls.br

Figure S1: Photograph of the setup at XRD2/LNLS beamline.

Figure S2: Scattering maps during spin coating for 1:1 PVSK:DMSO ratio at 20% rH in the CsFA perovskite with antisolvent drip time at (a) 1, (b) 5, (c) 10, (d) 15, (e) 20 and (f) 60s

Figure S3: Scattering maps during spin coating for 1:2 PVSK:DMSO ratio at 20% rH in the CsFA perovskite with antisolvent drip time at (a) 1, (b) 5, (c) 10, (d) 15, (e) 20 and (f) 60s

Figure S4: SEM images after thermal annealing of the samples prepared at 20% of rH with (a) 1:1 and (b) 1:2 PVSK:DMSO ratios at different anti-solvent dripping times.

Figure S5: X-ray diffraction patterns of CsFA perovskite prepared at 20% of rH after thermal annealing.

Figure S6: X-ray diffraction patterns of MAFA perovskites prepared at 3-5% and 40% of rH after thermal annealing.

3-0 40 80 120 160 0 40 80 120 160 Figure S7: Scattering maps during spin coating for MAFA perovskites at 1:2 ratio, prepared without antisolvent at (a) 3-5% and (b) 40% of rH.

Figure S8: PCE of the CsFA perovskite prepared and thermal annealed in the same rH of GIWAXS experiments.

Table S1: Summary of the phases formed with non-chlorobenzene application

rH	3-5%		20%		40%	
PVSK:DSMO ratio	1:1	2:1	1:1	2:1	1:1	2:1
Perovskite (black phase)	\checkmark	\checkmark		$\sqrt{\sqrt{1}}$		
Hexagonal phases	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{\sqrt{1}}$	\checkmark
Intermediates			\checkmark		$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$

----- : not observed, $\sqrt{}$: observed, $\sqrt{\sqrt{}}$: more intense

Table S2: Summary of the phases formed with antisolvent dripping for CsFA perovskite at low (3-5%) and high rH (40%) during spin coating preparation and after thermal annealing.

PVSK:DMSO ratio	1:1				1:2			
rH	3-5%		40%		3-5%		40%	
	Spin	After	Spin	After	Spin	After	Spin	After
	coating	thermal	coating	thermal	coating	thermal	coating	thermal
		annealing		annealing		annealing		annealing
Perovskite	$\sqrt{\sqrt{1}}$							
(black phase)								
Hexagonal	$\sqrt{\sqrt{1}}$							
Phases								
Pbl ₂								
CsPbl ₃		, √						

---- : not observed, $\sqrt{}$: observed, $\sqrt{\sqrt{}}$: more intense

rH (%)	PVS:DMSO	Time to drip(s)		Voc (V)	Jsc (mA/cm ²)	FF (%)	n (%)
3_5 1_1	45	F	0.97±0.02	20.04±0.82	50.43±3.67	9.87±1.24	
		15	R	0.99±0.02	18.48±0.89	60.93±2.58	11.20±0.99
3_5 1_2	1 2	15	F	0.97±0.01	19.22±1.17	49.04±4.83	9.19±1.23
	1_2	15	R	0.98±0.01	17.53±1.32	57.11±2.33	9.82±1.04
20	1 1	1	F	0.98±0.04	17.58±1.77	42.39±4.50	7.39±1.62
			R	0.99±0.04	15.98±2.06	54.36±3.28	8.73±1.77
20	1 1	5	F	0.97±0.02	18.69±0.58	46.78±4.35	8.45±0.91
20	1_1		R	0.99±0.01	16.99±0.94	61.70±2.15	10.38±0.70
20	1 1	10	F	0.94±0.01	18.85±0.67	52.40±2.35	9.33±0.67
			R	0.98±0.01	18.11±0.62	63.28±1.29	11.24±0.54
20 1_	1 1	15	F	0.95±0.01	19.36±1.41	52.03±3.00	9.51±0.76
			R	0.99±0.01	18.33±1.29	62.33±1.11	11.25±0.78
20 1_1	1 1	20	F	0.97±0.01	19.53±0.77	48.69±2.42	9.21±0.58
	1_1	20	R	1.00±0.01	18.19±0.85	62.02±2.80	11.22±0.77
20	1 1	60	F	0.86±0.01	13.69±0.32	39.02±1.52	4.60±0.21
			R	0.90±0.01	11.10±0.26	58.83±1.96	5.58±0.18
20	1.2	1	F	0.94±0.06	16.55±1.12	38.13±5.72	6.03±1.40
20	1_2		R	0.97±0.05	14.63±1.40	52.70±6.80	7.62±1.84
20 1	1.2	5	F	0.96±0.02	19.06±0.74	49.72±3.12	9.11±0.88
	1_Z		R	1.00±0.01	18.11±0.99	61.26±2.07	11.06±0.82
20 2	1.2	10	F	0.96±0.02	19.76±1.75	50.17±1.67	9.52±0.99
	1_2	10	R	0.98±0.02	19.06±1.67	59.87±3.27	11.24±1.30
20 1_2	1.2	15	F	0.96±0.01	21.18±0.92	48.34±1.91	9.88±0.59
	1_2	15	R	0.99±0.01	20.45±0.90	59.12±1.71	11.93±0.71
20 1_2	1 2	20	F	0.97±0.01	20.74±1.88	48.38±2.46	9.72±1.22
	1_2	20	R	1.00±0.01	19.70±1.89	60.09±2.01	11.82±1.46
20	1.2	60	F	0.97±19.28	19.28±1.74	47.47±3.07	8.88±1.31
	1_2		R	0.99±0.01	18.04±1.64	59.18±1.46	10.61±1.19
40	1 1	15	F	0.90±0.09	14.33±2.47	27.49±6.41	3.68±157
	±_±		R	0.94±0.08	10.98±2.27	52.51±6.01	5.54±1.80
40	1.2	15	F	0.90±0.03	15.71±1.92	32.03±4.94	4.61±1.30
40 1			R	0.94±0.03	12.61±2.21	54.99±3.61	6.52±1.23

Table S3: Photovoltaic parameters CsFA perovskite prepared and thermal annealed in the same rH of GIWAXS experiments. Average of 10 solar cells for each condition. F = Forward Scan, R = Reverse Scan.