Supplementary Material

Novel Aqueous Amine Looping Approach for the Direct Capture, Conversion and Storage of CO₂ to Produce Magnesium Carbonate

Meishen Liu,¹ Hassnain Asgar,¹ Soenke Seifert² and Greeshma Gadikota^{1,*}

¹School of Civil and Environmental Engineering, Cornell University

527 College Avenue, 117 Hollister Hall, Ithaca, NY 14850

²X-Ray Science Division, Building 433A Advanced Photon Source

Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL 60439

The contents of the supporting information are listed below.

Table S1. The extents of carbon mineralization of MgO as a function of MEA concentrations and temperatures.

Figure S1. Identification of the functional groups present in the solid obtained after reacting MgO

with water, 10 wt%, and 20 wt% MEA at 25 °C, 50 °C, 75 °C, and 90 °C with $P_{CO_2} = 1$ atm for 3 hours and stirring rate of 300 rpm ± 5 rpm, using ATR-FTIR measurements.

Figure S2. Identification of the functional groups present in the fluid obtained from reacting MgO with water (a), 10 wt% (b), and 20 wt% (c) MEA at 25 °C, 50 °C, 75 °C, and 90 °C with $P_{CO_2} =$ 1 atm for 3 hours and stirring rate of 300 rpm ± 5 rpm, using ATR-FTIR measurements.

Figure S3. Experimental configuration of aqueous alkaline amine looping process for accelerated carbon mineralization.

Figure S4. Experimental configuration of MgO reacting with CO_2 -loaded MEA in the USAXS/SAXS measurement.

Figure S5. Changes in the combined slit-smeared USAXS/SAXS data as MgO is reacted with CO2-loaded MEA to produce magnesium carbonate (full data set).

Figure S6. Experimental USAXS/SAXS scattering curves and fitted models for samples reacted for (a) 0 min, (b) 122 min, (c) 239 min, and (d) 385 min. The data were fitted using the Modelling -II tool in Irena package embedded in Igor Pro. The curve in (a) was modeled using two unified fit levels between the *q*-ranges of 0.001 - 0.02 Å⁻¹ and 0.02 - 0.8 Å⁻¹. For curves in panels (b), (c) and (d) besides two unified fit levels in *q*-ranges of 0.001 - 0.02 Å⁻¹ and 0.02 - 0.3 Å⁻¹, a Lorentzian diffraction peak was also fitted between *q* values of 0.3 - 0.8 Å⁻¹.

Temperature	H ₂ O	10 wt% MEA	20 wt% MEA	30 wt% MEA	50 wt% MEA
25 °C	8.1	2.1	1.6	1.5	4.2
50 °C	18.1	32.7	46.9	70.2	12.2
75 °C	42.0	46.3	52.4	62.2	52.7
90 °C	27.8	32.4	37.5	35.6	24.2

Table S1. The extents of carbon mineralization of MgO as a function of MEA concentrations and temperatures.

Figure S1. Identification of the functional groups present in the solid obtained after reacting MgO with water (a), 10 wt% (b), and 20 wt% MEA (c) at 25 °C, 50 °C, 75 °C, and 90 °C with $P_{CO_2} =$ 1 atm for 3 hours and stirring rate of 300 rpm ± 5 rpm, using ATR-FTIR measurements.

Figure S2. Identification of the functional groups present in the fluid obtained from reacting MgO with water (a), 10 wt% (b), and 20 wt% at 25 °C, 50 °C, 75 °C, and 90 °C with $P_{CO_2} = 1$ atm for 3 hours and stirring rate of 300 rpm ± 5 rpm, using ATR-FTIR measurements.

Figure S3. Experimental configuration of aqueous alkaline amine looping process for accelerated carbon mineralization.

Figure S4. Experimental configuration of MgO reacting with CO₂-loaded MEA in the USAXS/SAXS measurement.

Figure S5. Changes in the combined slit-smeared USAXS/SAXS data as MgO is reacted with CO_2 -loaded MEA to produce magnesium carbonate (full set of data).

Figure S6. Experimental USAXS/SAXS scattering curves and fitted models for samples reacted for (a) 0 min, (b) 122 min, (c) 239 min, and (d) 385 min. The data were fitted using the Modelling -II tool in Irena package embedded in Igor Pro. The curve in (a) was modeled using two unified fit levels between the *q*-ranges of 0.001 - 0.02 Å⁻¹ and 0.02 - 0.8 Å⁻¹. For curves in panels (b), (c) and (d) besides two unified fit levels in *q*-ranges of 0.001 - 0.02 Å⁻¹ and 0.02 - 0.3 Å⁻¹, a Lorentzian diffraction peak was also fitted between *q* values of 0.3 - 0.8 Å⁻¹.