Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material

Cross-linked sulfonated poly(ether ether ketone) electrolytes bearing pendent imidazole groups for high temperature proton exchange membrane fuel cells Jingjing Jiang,^{*}a Xingye Zhu,^{*}ab Huidong Qian,^{*a} Jianfeng Xu,^a Zhouying Yue,^a

Zhiqing Zou^a and Hui Yang^a

^a Shanghai Advanced Research Institute, Chinese Academy of Sciences, No.99 Haike

Road, Zhangjiang Hi-Tech Park, Shanghai 201210, PR China. E-mail: qianhd@sari.ac.cn

^b University of Chinese Academy of Sciences, Beijing 100049, PR China

[‡] These authors contributed equally to this work.

Figure S2. TGA curves of p-xylene dibromide under N₂ atmosphere.

Figure S3. SEM images of the surface of PA-PEMs for a) PA-SPEEK-Im, b) PA-C-SPEEK-10, c) PA-C-SPEEK-20 and d) PA-C-SPEEK-30 and the corresponding SEM-EDX elemental mapping images for C, O, P.

Figure S4. AFM height images of a) PA-SPEEK-Im, b) PA-C-SPEEK-10, c) PA-C-SPEEK-20 and d) PA-C-SPEEK-30.

Figure S5. Arrhenius plot of proton conductivity.

Figure S6. Measurement of the hydrogen crossover: linear sweep voltammograms for the PA doped membranes with dry H_2 and N_2 at ambient pressure. The scan rate is 10 mV s⁻¹.

Sample	Tensile	Young's	Elongation	Proton conductivity
	strength (MPa)	modulus (MPa)	at break (%)	at 130 °C (S cm ⁻¹)
SPEEK-Im	14.7	341.8	184	0.049
C-SPEEK-Im-10	16.5	593.1	75	0.046
C-SPEEK-Im-20	18.2	637.0	69	0.038
C-SPEEK-Im-30	29.4	780.6	63	0.035

Table S1. Mechanical properties and proton conductivity at 130 °C the membranes under Fenton treatment at 80 °C after 4 h.

Table S2. Comparison of the proton conductivity and peak power density of alternative PEMs

Sample	Proton conductivity	Peak power	Reference
	$(S \text{ cm}^{-1})$	density (W cm-	
		²)	
PA-C-SPEEK-Im-20	0.039 (130 °C, 30%	0.209 (130 °C)	This work
	RH)		
ABPBI/2S-Sep	0.020 (130 °C, 0	0.18 (120 °C)	J. Membr. Sci. 2019,
	RH)		574, 282
SPEEK/2#-PA	0.026 (130 °C, 0	0.177 (120 °C)	J. Membr. Sci. 2018,
	RH)		545, 88
PA-MTZPAEK(2.15)	0.028 (130 °C, 0	0.055 (140 °C)	J. Membr. Sci. 2018,
	RH)		545, 167
PECH-50SiIm-50MeIm	0.040 (133 °C, 0	0.128 (120 °C)	RSC Adv., 2016, 6,
/PTFE/PA	RH)		61029
M-5#/13.0PA	0.031 (130 °C, 0	0.175 (140 °C)	J. Membr. Sci. 2015,
	RH)		493, 80
TZ-PEEN	0.027 (140 °C, 0	0.287 (160 °C)	J. Mater. Chem. A,
	RH)		2015, 3, 14389
PA/PVDF-PVP80	0.055 (130 °C, 0	0.37 (130 °C)	J. Mater. Chem. A,
	RH)		2015, 3, 148
EtPSU/10.7PA	0.016 (130 °C,	0.172 (130 °C)	J. Power Sources
	15mol% water vapor)		2012, 205, 114

	J 2	J	
Sample	Proton conductivity	H ₂ cross-over current densit	
	at 130 °C (S cm ⁻¹)	at 0.55 V (mA cm ⁻²)	
PA-SPEEK-Im	0.052	2.41	
PA-C-SPEEK-Im-10	0.048	1.77	
PA-C-SPEEK-Im-20	0.039	1.33	
PA-C-SPEEK-Im-30	0.035	1.24	

Table S3. Proton conductivity and H₂ cross-over current density of PEMs.

Table S4. Pure gas permeability of PA doped membranes at 50 psi and 35 °C.

Sample	Thickness (µm)	P(O ₂) (Barrer)	P(H ₂) (Barrer)
PA-SPEEK-Im	73	0.19	1.64
PA-C-SPEEK-Im-10	75	0.10	0.83
PA-C-SPEEK-Im-20	76	0.07	0.61
PA-C-SPEEK-Im-30	72	0.06	0.57

P is permeability coefficient. 1 Barrer = 10^{-10} cm³ (STP) cm/(cm² s cmHg).