Supporting Information

Branched cellulose reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries

Hailong Wu,^a Jiali Wang,^a Yu Zhao,^a Xiaoqiang Zhang,^a Ling Xu,^a Hao Liu,^c Yixiu Cui,^a

Yanhua Cui,^{a,*} and Chilin Li^{b,*}

^a Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621000, China. Email: cuiyanhua@netease.com

^b State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. Email: chilinli@mail.sic.ac.cn

^c Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Science and Technology Development Center of CAEP, Chengdu, Sichuan 610207, China

Figure S1. TGA curves of PEO, HEMC, PEO-SPE and PEO/HEMC-CPEs with HEMC filler of different content.

Figure S2. DSC thermogram of HEMC.

Figure S3. Liner sweep voltammogram of PEO-SPE with local magnification to disclose the position of current uptilting as shown in inset.

Figure S4. Impedance spectra of a) Li $|PEO_{16}$ -LiTFSI|Li and b) Li $|PEO_{16}$ -LiTFSI-20HEMC|Li symmetric cells for different aging time at 60 °C. c) Corresponding interfacial resistance evolution depending on different storage time.

Figure S5. a) Overpotential comparison of Li|PEO₁₆-LiTFSI|Li and Li|PEO₁₆-LiTFSI-20HEMC|Li symmetric cells depending on cycle number at 0.1 mA cm⁻² based on 1 h plating and 1 h stripping under room temperature. b) Overpotential evolution of Li|PEO₁₆-LiTFSI-20HEMC|Li symmetric cell under different current density of 0.1, 0.2 and 0.3 mA cm⁻² as sequence under room temperature. c) Overpotential evolution of Li|PEO₁₆-LiTFSI-20HEMC|Li cell at a constant current density of 0.5 mA cm⁻² under 60 °C.

Figure S6. Galvanostatic cycling of Li $|PEO_{16}$ -LiTFSI-20HEMC|Li symmetrical cell based on a current density of 1 mA cm⁻² at 60 °C.

Figure S7. Fitting results of R_b , R_{SEI} and R_{ct} values of Li|PEO₁₆-LiTFSI-20HEMC|LiFePO₄ cell after different cycling stages at a current density of 0.5 C under ambient temperature.

Figure S8. a) Typical charge-discharge curves and b) rate performance of Li|Liquid electrolyte|LiFePO₄ cell operated at ambient temperature.

Figure S9. Charge-discharge profiles of Li/PEO₁₆-LiTFSI-20HEMC/NCM811 cells in different cycling stages at 0.5 C measured at (a) room temperature and (b) 60 °C. Cycling performance of Li/PEO₁₆-LiTFSI-20HEMC/NCM811 cells (c) at 0.5 C measured at room temperature and 60 °C and (d) at 1 C measured at 60 °C.