Electronic Supplementary Information for

Wood-derived hierarchically porous monolithic carbon matrix embedded with Co nanoparticles as an advanced electrocatalyst for water splitting

Yanan Li,^{a,b,c} Shixiong Min*a,b,c and Fang Wang^{a,b,c}

 ^a School of Chemistry and Chemical Engineering, Key Laboratory of Electrochemical Energy Conversion Technology and Application, North Minzu University, Yinchuan, 750021, P. R. China.
 ^b Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China.

^c Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China.

*Corresponding authors: Tel: +86 951 2067917. E-mail: sxmin@nun.edu.cn

Fig. S1 The cyclic voltammograms (CV) of Pt wire working electrode in the high purity hydrogen saturated 1 M KOH electrolyte solution. The CV scans were run at a scan rate of 5 mV s⁻¹, and the average of the two potentials at which the current crossed zero was taken to be the thermodynamic potential for the hydrogen electrode reactions.

Fig. S2 XRD patterns of Co@N-HPMC and N-HPMC.

Fig. S3 Raman spectra of Co@N-HPMC and N-HPMC.

Fig. S4 XPS spectra of NW, Co/CoO_x@NW-HT, Co/CoO_x@NW-LT, and Co@N-HPMC.

 Table S1 The content variation of diffrent Co species calculated based on the fitting results of XPS analysis.

Sample	Co ⁰	Co ³⁺	Co ²⁺	Co-N _x
Co/CoO _x @NW	24.6%	34.3%	41.1%	0%
Co/CoO _x @NW-LT	26.1%	19.8%	54.1%	0%
Co@N-HPMC	5.2%	0%	55.1%	39.7%
Co@N-HPMC after HER stability test	4.7%	0%	59.9%	35.4%
Co@N-HPMC after OER stability test	6.9%	35.9%	42.3%	14.9%

Table S2 ICP-OES analysis of Co@N-HPMC.

Sample	Electrode area (cm ²)	Mass (g)	Concentration of Co (mg kg ⁻¹)	Loading of Co in Co@N-HPMC (mg cm ⁻²)
Co@N-HPMC	1.0	0.0162	19490.1	0.32

Fig. S5 (a, b) Top-view SEM images of N-HPMC and (c) corresponding EDX elemental maps. (d, e) Side-view SEM images of N-HPMC and (f) corresponding EDX elemental maps.

		solution.		
	Overpotential	Catalyst		
Samples	(mV) at 10 mA	Loading	Self-supported	Reference
	cm ⁻²	$(mg cm^{-2})$		
Co@HPMC	128	0.32	Yes	This work
Co-NCNT/CC	78	3.4	Yes	S1
Co _{6.25} Fe _{18.75} Ni ₇₅ O _x	84	4	Yes	S2
Co@NC-Ti	106	11.2	Yes	S 3
CoFe/NF	110	0.42	Yes	S4
CoP/CC	131	1.5	Yes	S5
Co(OH) ₂ /NCNTs/NF	170	0.72	Yes	S6
NiCo ₂ N/NF	180	-	Yes	S7
Co-MoS ₂	48	4	No	S 8
Co ₄ Ni ₁ P NTs	129	0.19	No	S9
Co ₂ P-N-C	139	0.4	No	S10
FeCo	149	1	No	S11
H-Co _{0.85} Se P	150	2.1	No	S12
Cu@CoFeLDH	171	2.4	No	S13
Co/NS	173	12	No	S14
Co@BCN	183	21.23	No	S15
Co@NCN-800	200	0.285	No	S16
Co/N–C	210	4.5±0.1	No	S17
Co@Co ₃ O ₄ -NC	221	0.4	No	S18
FeCo@NCNTsNH	275	0.32	No	S19
N-Co@G	337	0.285	No	S20
Co-NRCNTs	370	0.280	No	S21

Table S3 HER activities of various non-noble metal electrocatalysts in 1.0 M KOH

Fig. S6 Nyquist plots of N-HPMC and Co@N-HPMC recorded in 1.0 M KOH at open cicuit potential. The The N-HPMC has a small semicircles in the low-frequency range of the Nyquist plots than Co@N-HPMC, indicating that the charge-transfer-related resistance (R_{ct}) of N-HPMC is smaller than Co@HPMC, which is due to the fact that the presence of surface oxides on Co nanoparticles will interrupt the electron transfer within N-HMPC matrix.

Fig. S7 CV curves of the (a) N-HPMC and (b) Co@N-HPMC at various scan rates. (c) Comparison of C_{dl} for N-HPMC and Co@N-HPMC.

Fig. S8 (a, b) Top-view SEM images of Co@N-HPMC after HER stability test and (c) corresponding EDX elemental maps. (d, e) Side-view SEM images of Co@N-HPMC after HER stability test and (f) corresponding EDX elemental maps.

Fig. S9 (a) XRD patterns and (b) Raman spectra of Co@N-HPMC before and after HER stability test.

Fig. S10 High-resolution XPS spectra of (a) Co 2p and (b) N 1s for Co@N-HPMC before and after HER stability test.

Samples	Overpotential (mV) at $j=10 \text{ mA cm}^{-2}$	Catalyst Loading (mg cm ⁻²)	Self-supported	Reference
Co@HPMC	297	0.32	Yes	This work
Co _{6.25} Fe _{18.75} Ni ₇₅ O _x	186	4	Yes	S2
CoFe/NF	220	0.42	Yes	S4
Co(OH) ₂ /NCNTs/NF	270	0.72	Yes	S 6
NiCo ₂ N/NF	290	-	Yes	S 7
Co ₁ Mn ₁ CH/NF	294	-	Yes	S22
CoP/CC	300	1.5	Yes	S 5
Cu@CoFe LDH	240	2.4	No	S13
CoFeBO/NS	240	2.0	No	S14
Co ₄ Ni ₁ P	245	0.19	No	S12
Co-MoS ₂	260	4	No	S 8
Co _{0.9} S _{0.58} P _{0.42}	266	-	No	S23
FeCoNi	288	1	No	S11
Mn-Co oxyphosphide	320	0.25	No	S24
CoS ₂ /N,S-GO	380	0.25	No	S25
Co@Co ₃ O ₄ -NC	391	0.4	No	S18
Čo@N–C	400	0.45 ± 0.1	No	S17

Table S4 OER activities of various non-noble metal electrocatalysts in 1M KOH.

Fig. S11 (a, b) Top-view SEM images of Co@N-HPMC after OER stability test and (c) corresponding EDX elemental maps. (d, e) Side-view SEM images of Co@N-HPMC after OER stability test and (f) corresponding EDX elemental maps.

Fig. S12 Nyquist plots of the Co@N-HPMC before and after OER meaured at open circuit potential.

Fig. S13 (a) XRD patterns and (b) Raman spectra of Co@N-HPMC before and after OER stability test.

Fig. S14 High-resolution XPS spectra of (a) Co 2p and (b) N 1s for Co@N-HPMC before and afte OER stability test.

electrocatalysts					
Electrode configuation Cathode Anode	Overpotential (V) at <i>j</i> =10 mA cm ⁻²	Catalyst Loading (mg cm ⁻²)	Self- supported	Reference	
Co@HPMC Co@HPMC	1.77	0.32	Yes	This work	
CoFe/NFICoFe/NF	1.45	0.42	Yes	S4	
$\begin{array}{c} Co_{6.25}Fe_{18.75}Ni_{75}O_x\ Co_{6.25}Fe_{18.75}Ni_{75}\\O_x\end{array}$	1.583	0.19	Yes	S2	
CoSe film CoSe film	1.65	3.8	Yes	S26	
CoP/CC CoP/CC	1.68	1.5	Yes	S5	
NiCo2N/NFINiCo2N/NF	1.7	-	Yes	S 7	
Co(OH) ₂ /NCNTs/NF Co(OH) ₂ /NC NTs/NF	1.72	0.72	Yes	S6	
CoFeBO/NSICo/NSICoFeBO/NSI Co/NS	1.51	12/2	No	S14	
Co ₄ Ni ₁ P NTs Co ₄ Ni ₁ P NTs	1.59	0.19	No	S11	
$Co_{0.9}S_{0.58}P_{0.42}$ $Co_{0.9}S_{0.58}P_{0.42}$	1.59	-	No	S23	
$EG/H\text{-}Co_{0.85}Se P EG/H\text{-}Co_{0.85}Se P $	1.64	2.1	No	S12	
NiCo ₂ O ₄ NiCo ₂ O ₄	1.65	1.0	No	S27	
FeCollFeCoNi	1.678	1	No	S11	
Cu@CoFeLDH Cu@CoFeLDH	1.681	2.4	No	S13	
Co ₃ O ₄ NCs/carbon Co ₃ O ₄ NCs/carbon	1.91	0.35	No	S28	

 Table S5 Comparison of two electrodes water splitting with different bifunctional

References

- [S1] Z. C. Xing, Q. Liu, W. Xing, A. M. Asiri and X. P. Sun, *ChemSusChem* 2015, 11, 1850-1855.
- [S2] Z. C. Wu, X. Wang, J. S. Huang and F. Gao, J. Mater. Chem. A 2018, 6, 167-178.
- [S3] W. J. Zhou, Y. C. Zhou, L. J. Yang, J. L. Huang, Y. T. Ke, K. Zhou, L. G. Li and S. W. Chen, J. Mater. Chem. A 2015, 3, 1915-1919.
- [S4] P. Babar, A. Lokhande, H. H. Shin, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, Small 2018, 14, 1702568.
- [S5] Y. F. Cheng, F. Liao, W. Shen, L. B. Liu, B. B. Jiang, Y. Q. Li and M. W. Shao, *Nanoscale* 2017, 9, 18977-18982.
- [S6] P. Guo, J. Wu, X. B. Li, J. Luo, W-M. Lau, H. Liu, X-L. Sun and L-M. Liu, *Nano Energy* 2018, 47, 96–104.
- [S7] Y. Q. Wang, B. H. Zhang, W. Pan, H. Ma and J. T. Zhang, *ChemSusChem* 2017, 10, 4170-4177.
- [S8] Q. Z. Xiong, Y. Wang, P. F. Liu, L. R. Zheng, G. Z. Wang, H. G. Yang, P. K. Wong, H. M, Zhang and H. J. Zhao, *Adv. Mater.*, 2018, **30**, 1801450.
- [S9] L. T. Yan, L. Cao, P. C. Dai, X. Gu, D. D. Liu, L. J. Li, Y. Wang and X. B. Zhao, *Adv. Funct. Mater.*, 2017, 27, 1703455.
- [S10] B. You, Y. D. Zhang, P. Q. Yin, D. E. Jiang and Y. J. Sun, *Nano Energy* 2018, 48, 600-606.
- [S11] Y. Yang, Z. Y. Lin, S. Q. Gao, J. W. Su, Z. Y. Lun, G. L. Xia, J. T. Chen, R. R. Zhang and Q. W. Chen, ACS Catal., 2016, 7, 469-479.
- [S12] Y. Hou, M. Qiu, T. Zhang, X. D. Zhuang, C. S. Kim, C. Yuan and X. L. Feng, Adv. Mater., 2017, 29, 1701589.

- [S13] L. Yu, H. Q. Zhou, J. Y. Sun, F. Qin, D. Luo, L. X. Xie, F. Yu, J. M. Bao, Y. Li, Y. Yu, S. Chen and Z. F. Ren, *Nano Energy* 2017, 41, 327-336.
- [S14] B. Liu, N. Zhang and M. M. Ma, J. Mater. Chem. A 2017, 5, 17640-17646.
- [S15] H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. Meng, K. Wu and J. Ye, ACS Nano 2016, 10, 684-694.
- [S16] X. P. Dai, Z. Z. Li, Y. Ma, M. Z. Liu, K. Du, H. X. Su, H. Y. Zhuo, L. Yu, H. Sun and X. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 6439-6448.
- [S17] J. Wang, D. F. Gao, G. X. Wang, S. Miao, H. H. Wu, J. Y. Li and X. H. Bao, J. Mater. Chem. A 2014, 2, 20067-20074.
- [S18] C. D. Bai, S. S. Wei, D, R. Deng, X. D. Lin, M. S. Zheng and Q. F, Dong, J. Mater. Chem. A 2017, 5, 9533-9536.
- [S19] J. Deng, P. Ren, D. H. Deng, L. Yu, F. Yang and X. H. Bao, *Energy Environ. Sci.*, 2014, 7, 1919-1923.
- [S20] H. L. Fei, Y. Yang, Z. W. Peng, G. D. Ruan, Q. F. Zhong, L. Li, E. L. G. Samuel and J. M. Tour, ACS Appl. Mater. Interfaces 2015, 7, 8083-8087.
- [S21] X. X. Zou, X. X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmeková and T. Asefa, *Angew. Chem. Int. Ed.*, 2014, 53, 4372-4376.
- [S22] T. Tang, W. J. Jiang, S. Niu, N. Liu, H. Luo, Y. Y. Chen, S. F. Jin, F. Gao, L. J. Wan and J. S. Hu, *J. Am. Chem. Soc.*, 2017, **139**, 8320-8328.
- [S23] Z. F. Dai, H. B. Geng, J. Wang, Y. B. Luo, B. Li, Y. Zong, J. Yang, Y. Y. Guo, Y. Zheng, X. Wang and Q. Y. Yan, ACS Nano 2017, 11, 11031-11040.
- [S24] B. Y. Guan, L. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2017, 56, 2386–2389.
- [S25] S. Shanmugam, M, Prabu, P. Ganesan and J. Sanetuntikul, *ACS Catal.*, 2015, 5 3625–3637.
- [S26] T. T. Liu, Q. Liu, A. M. Asiri, Y. L. Luo and X. P. Sun, Chem. Commun., 2015, 51, 16683-16688.
- [S27] X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Angew. Chem., Int. Ed., 2016, 55, 6290-6294.
- [S28] S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhu and H. Fu, *Chem. Commun.*, 2015, **51**, 8066-8069.