Supplementary Information

Hybridizing amorphous NiO_x nanoflakes and Mn-doped Ni₂P nanosheet arrays for enhanced overall water electrocatalysis

Wen-Zhuo Zhang,^{a,§} Guang-Yi Chen,^{a,*,§} Jian Zhao,^{*,a} Ji-Cai Liang,^{a,b} Guang-Fei Liu,^a Bao-Wei Ji^a and Li-Feng Sun^a

- ^{*a*} School of Automotive Engineering, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China.
- ^b Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025, China.
- * Correspondence author: E-mail: chengy@dlut.edu.cn (G. Y. Chen)

jzhao@dlut.edu.cn (J. Zhao)

[§] Wen-zhuo Zhang and Guang-yi Chen contributed equally to this work

Supporting Figures

Figure S1. EDS spectrums of (a) Mn₃-Ni₂P, (b) Mn₅-Ni₂P and (c) Mn₇-Ni₂P.

Figure S2. (a) SEM, (b) XRD and (c) EDS result of pure Ni_2P .

Figure S3. LSV curves of Mn_x -Ni₂P and pure Ni₂P for (a) HER and (b) OER.

Figure S4. (a) Electron image of $A-NiO_x-20/Mn_5-Ni_2P$ and corresponding elemental mapping images of (b) O, (c) Mn, (d) P, and (e) Ni.

Figure S5. SEM images of (a) $A-NiO_x-10/Mn_5-Ni_2P$ and (b) $A-NiO_x-30/Mn_5-Ni_2P$.

Figure S6. Controlled-current electrolysis of A-NiO_x-20/Mn₅-Ni₂P at 10, 50 and 100 mA

cm⁻² for HER.

Table S1. Comparison of the HER activity for several recently reported catalysts in 1 MKOH.

Catalyst	Mass loading	η_{10}	Tafel	Reference	
	(mg cm ⁻²)	(mV)	(mV dec⁻¹)		
A-NiO _x -20/Mn ₅ -Ni ₂ P	3.6	55	37	This work	
Ni ₈ P ₃ nanoflacs/NF	10.58	130	58.5	1	
Ni _x P nanosheets/CC	25.8	117	85.4	2	
Am FePO ₄ /NF	0.285	123	104.49	3	
Fe- and O-doping CoP nanowires/NF	2.187	88	38.1	4	
CoP mesoporous nanorod /NF	6.2	54	51	5	
CoNiP film	/	82	43	6	
hierarchically structured NiCoP	4.75	30	41	7	
CoP@Ni₅P₄@CoP/NF	/	71	58	8	
CoP@Amorphous- CoO _x /CC	3	132	89	9	
CoP nanocrystal/Ti	0.18	170	66	10	
FeP ₂ nanowires/SS	45	189	67	11	
NiS@Ni ₂ P ₂ S ₆ /NF	1	140	72	12	
P-Co ₃ O ₄ /Ti	0.4	120	52	13	

Figure S7. Calculated exchange current density of A-NiO_x-20/Mn₅-Ni₂P, Mn₅-Ni₂P and

A-NiO_x by using extrapolation methods.

Figure S8. Mass activity of A-NiO_x-20/Mn₅-Ni₂P, Mn₅-Ni₂P and A-NiO_x for HER.

Figure S9. (a) CV curves of A-NiO_x-20/Mn₅-Ni₂P, Mn₅-Ni₂P and A-NiO_x in 1 M PBS (pH=7) with a scan rate of 50mV/s. (b) Calculated TOF values of A-NiO_x-20/Mn₅-Ni₂P, Mn₅-Ni₂P and A-NiO_x for HER.

Figure S10. HER cyclic voltammograms for (a) A-NiO_x-20/Mn₅-Ni₂P, (b) Mn₅-Ni₂P and (c) A-NiO_x in the non-Faradaic capacitance current range from 0.1 to 0.2 V vs. RHE at scan rates of 10 (black curve), 20 (red curve), 40 (blue curve), 60 (magenta curve), 80 (olive curve), and 100 (navy curve) mV s⁻¹. (d) Scan rate dependence of the current densities of A-NiO_x-20/Mn₅-Ni₂P, Mn₅-Ni₂P and A-NiO_x at 0.15 V vs. RHE.

Figure S11. (a) SEM and (b) HRTEM image of $A-NiO_x-20/Mn_5-Ni_2P$ after HER stability test for 20 h in 1 M KOH.

Figure S12. The high resolution XPS spectra of $A-NiO_x-20/Mn_5-Ni_2P$ after HER stability

test for 20 h. (a) Mn 2p, (b) Ni 2p, (c) P 2p and (d) O 1s.

Figure S13. XRD pattern of A-NiO_x-20/Mn₅-Ni₂P after HER stability test for 20 h in 1 M KOH.

Figure S14. Controlled-current electrolysis of A-NiO_x-20/Mn₅-Ni₂P at 10, 50 and 100 mA cm⁻² for OER.

Table S2. Comparison of the OER activity for several recently reported catalysts in 1M KOH.

Catalyst	Mass loading	η_{10}	Tafel	Reference
	(mg cm ⁻²)	(mV)	(mV dec ⁻¹)	
A-NiO _x -20/Mn ₅ -Ni ₂ P	3.6	255	55	This work
IrO2	2.2	352	82	4
Fe- and O-doping CoP	2.2	275	52	4
nanowires/NF				
CoP nanosheet	2.6	300	85	14
arrays/CC				
CoNiFeP nanocubes	0.283	273	35	15
Fe-CoS ₂ /NF	/	302	128	16
Ni ₂ P/(NiFe) ₂ P(O)/NF	/	150	60	17
P-Co-Fe-B	0.46	225	40	18
Ni ₂ P nanoparticles	0.14	290	47	19

Figure S15. (a) SEM and (b) HRTEM image of $A-NiO_x-20/Mn_5-Ni_2P$ after OER stability test for 20 h in 1 M KOH.

Figure S16. The high resolution XPS spectra of A-NiO_x-20/Mn₅-Ni₂P after OER stability

test for 20 h. (a) Mn 2p, (b) Ni 2p, (c) P 2p and (d) O 1s.

Figure S17. (a) XRD pattern and (b) EDS spectrum of $A-NiO_x-20/Mn_5-Ni_2P$ after OER stability test for 20 h in 1 M KOH.

Figure S18. Experimentally measured and theoretically calculated amounts of H₂ and

 O_2 versus time for A-NiO_x-20/Mn₅-Ni₂P at a fixed current density of 10 mA cm⁻².

Notes and references

- 1. G. F. Chen, T. Y. Ma, Z. Q. Liu, N. Li, Y. Z. Su, K. Davey and S. Z. Qiao, *Adv. Funct. Mater.*, 2016, **26**, 3314-3323.
- X. Wang, W. Li, D. Xiong, D. Y. Petrovykh and L. Liu, Adv. Funct. Mater., 2016, 26, 4067-4077.
- L. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao, G. Su, W. Wang, L. Cao and B. Dong, *Adv. Mater.*, 2017, 29, 1704574.
- 4. J. Duan, S. Chen, A. Vasileff and S. Z. Qiao, ACS Nano, 2016, 10, 8738-8745.
- 5. Y. P. Zhu, Y. P. Liu, T. Z. Ren and Z. Y. Yuan, Adv. Funct. Mater., 2015, 25, 7337-7347.
- J. Yu, Q. Li, Y. Li, G. Y. Xu, L. Zhen, V. P. Dravid and J. Wu, *Adv. Funct. Mater.*, 2016, 26, 7644-7651.
- 7. P. Zhang, H. Chen, M. Wang, Y. Yang, J. Jiang, B. Zhang, L. Duan, Q. Daniel, F. Li and L. Sun, *J. Mater. Chem. A*, 2017, **5**, 7564-7570.
- 8. I. K. Mishra, H. Zhou, J. Sun, F. Qin, K. Dahal, J. Bao, S. Chen and Z. Ren, *Energy Environ. Sci.*, 2018, **11**, 2246-2252
- J. Yu, Y. Zhong, X. Wu, J. Sunarso, M. Ni, W. Zhou and Z. Shao, *Adv. Sci.*, 2018, 5, 1800514.
- 10. D. H. Ha, B. Han, M. Risch, L. Giordano, K. P. C. Yao, P. Karayaylali and Y. S. Horn, *Nano Energy*, 2016, **29**, 37-45.
- 11. C. Y. Son, I. H. Kwak, Y. R. Lim and J. Park, Chem. Commun., 2016, 52, 2819-2822.
- 12. X. Zhang, S. Zhang, J. Li and E. Wang, J. Mater. Chem. A, 2017, 5, 22131-22136.
- 13. Z. Xiao, Y. Wang, Y. C. Huang, Z. Wei, C. L. Dong, J. Ma, S. Shen, Y. Li and S. Wang, *Energy Environ. Sci.*, 2017, **10**, 2563-2569.
- 14. T. Liu, L. Xie, J. Yang, R. Kong, G. Du, A. M. Asiri, X. Sun and L. Chen, *ChemElectroChem*, 2017, **4**, 1840-1845.
- 15. Y. Guo, J. Tang, Z. Wang, Y. Sugahara and Y. Yamauchi, Small, 2018, 14, 1802442.
- 16. W. Kong, X. Luan, H. Du, L. Xia and F. Qu, Chem. Commun., 2019, 55, 2469-2472.
- 17. W. Xi, G. Yan, Z. Lang, Y. Ma, H. Tan, H. Zhu, Y. Wang and Y. Li, Small, 2018, 14,

1802204.

Z. Wu, D. Nie, M. Song, T. Jiao, G. Fu and X. Liu, *Nanoscale*, 2019, **11**, 7506-7512.
L. A. Stern, L. Feng, F. Song and X. Hu, *Energy Environ. Sci.*, 2015, **8**, 2347-2351.
20.