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Figure S1. The particles size distribution of the (a) (NHy);FeF¢ and (b)
(NHy);FeF¢/GNS prepared at 200 °C for 2 h.
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Figure S2. N, adsorption-desorption isotherms of the pure (NHy);FeFs and
(NH4)3F€F6/GNS .
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Figure S3. TG and DSC curves of the (NH4);FeF¢/GNS obtained in air atmosphere
from room temperature to 800 °C at a rate of 10 °C min-!.

The TG curve of (NH4);FeFs/GNS can be divided into two stages: (I) at 25-400 °C, there is
rapid weight loss of 39.0% at ca. 200 °C, which should be attributed to the transformation from
(NHy);FeF; phase to FeF; phase. There is an endothermic peak on the corresponding temperature
range of differential scanning calorimetry (DSC) line; (II) at 400-800 °C, when the temperature up
to 410 °C, the TG curve also display a rapid decline corresponding to the oxidations of graphene
into CO,/CO and FeF; into Fe,O;. Therefore, there is an obvious exothermal peak on the
corresponding temperature range of DSC line. The (NHy);FeFs and GNS content in
(NH4);FeFs/GNS can be calculated to be ca. 78.0 wt% and 22.0 wt%, respectively.
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Figure S4. (a) XRD pattern, (b) crystal structure and (c, d) SEM images of FeF,/GNS
obtained by annealing (NH4);FeF¢/GNS at 400 °C for 3 h.
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Figure SS. XRD pattern of the samples obtained at various NH4F/Fe(acac); molar ratios
of 4:1, 6:1 and 8:1 at 200 °C for 2 h.

Figure S6. SEM images of the samples obtained at various NH4F/Fe(acac); molar ratios
of (aand d) 4:1, (b and ¢e) 6:1 and (c and f) 8:1 at 200 °C for 2 h.
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Figure S7. XRD pattern of the samples obtained at different reaction temperatures of
80, 150, 200, 300 and 400 °C with a NH4F/Fe(acac); molar ratio of 8:1.
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Figure S8. SEM images of the samples obtained at different reaction temperatures (a
and f) 80, (b and g) 150, (¢ and h) 200, (d and 1) 300 and (e and j) 400 °C with a
NH,F/Fe(acac); molar ratio of 8:1. (Inset: corresponding to the particles
size distribution of the samples.)
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Figure S9. (a) XPS survey spectra, (b) Nals, (c) Nls, (d) Fe2p and (e) Fls spectra of
pristine (NH4);FeF¢/GNS, and (NH4);FeF¢/GNS electrodes after discharging to 0.1 V
and charging to 2.8 V in the first cycle, respectively.



Figure S10. (i) STEM images of (NH,4);FeFs/GNS electrode after discharging to 0.1 V
in the first cycle and corresponding elemental mappings of C (ii), Fe (iii), N (iv), F (v),
Na (vi).
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Figure S11. The initial three charge/discharge curves of GNS at 0.1 A g’

The first reversible capacities of (NH,);FeFs/GNS and GNS are ca. 487.8 mA h g'! and 282.5
mA h g! (Fig. S11). Therefore, the specific capacity contribution of GNS in the (NHy);FeFs/GNS
composite is 62.1 mA h g'! (calculated by 282.5%22.0%), and the specific capacity contribution of
(NHy);FeFs in the (NHg);FeFs/GNS should be 425.7 mA h g'! (calculated by 487.8 — 62.1).
Therefore, the actual capacity of (NHy4);FeFs is ca. 545.7 mA h g'! (calculated by 425.7 / 78.0%).
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Figure S12. (a) initial three galvanostatic charge/discharge curves and (b) cycling
performances of FeF,/GNS.
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Figure S13. (a, b) Electrochemical impedance spectroscopy (EIS) after 2 cycles and 5
cycles at 0.1 A g, (c, d) Warburg coefficient ¢ after 2 cycles and 5 cycles at low-
frequency of pure (NHy);FeFs FeF,/GNS and (NHy);FeF¢/GNS. (Inset: corresponding
to equivalent circuit model for SIBs.)

Table S1. The fitting results of the EIS curves obtained by equivalent circuit.

Re R¢ Rq o D
The sample
Q) Q) Q) (@s™)  (ecm*S7)
After 2-cycles  14.13 8.35 5.98 801.311  3.21x10"7
(NH,);FeFg
After 5-cycles 1542 11.76 26.41 803.124  3.21x10"7
After 2-cycles  10.07 3.49 6.00 288.74 4.05x 1016
FeF,/GNS
After 5-cycles  10.09 8.97 1557 171.32 1.156x10715
After 2-cycles 11.33 4.53 3.01 47.211 3.13x 1013
(NH,);FeFs/GNS
After 5-cycles 11.63 4.72 3.26  32.043 6.80x10-13

As shown in Fig. S13, the EIS curves of the pure (NHy);FeFs, FeF,/GNS and (NH4);FeF¢/GNS
were fitted by the equivalent circuit, which consist of a semicircle in high frequency region and a
line in low frequency region. R is the electrolyte impedance, and Ry and C; are the resistance and
capacitance of the SEI layer formed on the surface of the electrodes, respectively. R.;and Cy, are the
charge-transfer resistance and double-layer capacitance. Z,, is the Warburg impedance. The sodium
ion diffusion coefficient (D) can be calculated at low frequency with the Equation S1:

R>T?
2A°n*F*c? 6P

where R is the gas constant, T is the absolute temperature in experiment, A is the electrode

Equation S1

surface area, n is the number of transferred electrons, F is Faraday's constant, C is the concentration



of sodium ion in anode electrode materials. ¢ is the Warburg coefficient, which was determined as
the slope of Z' vs. @2 plots in the low-frequency region. The value of ¢ can be got by the Equation
S2:

. _12
Z = Re + RCt tow Equation S2

The EIS simulation results of the pure (NH,);FeFs and (NH4);FeF¢/GNS are presented in Fig.
S13 and Table S1.

The sodium ion diffusion coefficient (D) of pure (NH4);FeFs, FeF,/GNS and
(NHy);FeFs/GNS are 3.21x10717,4.05x10°1 cm? s7! and 3.13x1013 ¢m? s7! after the 2th cycle,
and 3.21x10717, 1.15x10'15 cm? s7' and 6.80x1013 cm? s™! after 5th cycle, respectively.

Table S2. Electrochemical performance comparison for Na-ion storage performances

of TMFs reported in the references.

Materials Crystal Voltage Initial reve-zr5|ble Cycle performance Rate performance Ref
structure range capacity
" 190 mA hg" 40.7 mA h g'at 553 mAg™!
CoF, Rutile-type 0.01-3.0V at 553 mAg" after 30 cycles — 1
Hexagonal- 160 mA hg'at25 mA g
TiOpg(OH)osFi0 7y gsten- 0.5-2.9V 150 mA h g 100 mA h g at 25 mAg"! 130 mA h g at 50 mA g-! 2
.59H,0 bronge-t e e at 25 mAg" after 115 cycles 120 mA hg'at75 mA g
yp 100 mA h g at 125 mA g-'
490 mA hg at 0.05C
384mA hg'at0.1C
-1 -1
SNF,@C  Like-rutiletype  0.01-2.0V 5?; 3‘:5"09 337;‘&“53 Cailg'sos ¢ 320mA hg'at0.2C 3
- Y 288 mA h g at 0.5C
191 mA hg'at1C
4.1 pAh cm2 at 2 yA cm2
" 45 pAh cm2 at 2 1.7 yAh cmr2at 8 pA cm2
NaF-Ti - 0.01-2.5V pA cm?2 - 1.2 pA cm2at 12 pA cm?2 4
0.7 pA cm2at 20 pA cm?
Tetragonal- . " . " ~90mAhg'at05C
KNb,OGF tungsten-  0.1-30v 170 1;:%“1”;“ g’ 100 L}:’em;‘g cf;s°'1 ¢ 60mAhglat1cC 5
bronze-type } 4 ~30mAhg'at5C
175mA hg'at0.2 Ag"’ 211mA hg'at0.2 Ag"
N 504 mA hg' after 100 cycles 153 mA hg'at0.5Ag"’
NHFeFJ/GNS  Perovskite 0128V Ji045a' gt 117mAhg'at0.5Ag" 113mAhg'at1.0Ag" 6
after 100 cycles 76 mAhg'at2.0Ag"’
160.2mAhg'at1.0A g
" 319.3mA hg' after 100 cycles This
FeF,/GNS Rutile-type 0128V " /01Ag?  1303mAhg'at50Ag" - work
after 100 cycles
276.9mAhg'at1.0A g’ 287.3mAhg'at1.0A g’
. . 487.8 mA h g*' after 100 cycles 257.8 mAhg'at2.0A g’ This
(NH);FeFJGNS  Diperovskite  0.1-28V " /6 1A 0¥ 1774mAhg'at50Ag' 2194mAhglat50Ag!  work

after 100 cycles

180.6 mA hg'at 10.0A g
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