Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Controllable construction of oxygen vacancies by anaerobic catalytic combustion of dichloromethane over metal oxides for enhanced solar-to-hydrogen conversion

Sufen Zhang, Jianni Liu, Xiaoyang Dong, Xiaoxia Jia, Ziwei Gao, and

Quan Gu*

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi

Normal University, Xi'an, 710062, China

*E-mail: guquan@snnu.edu.cn

Figure S1 amount of CH_4 detected by GC during the reaction of CH_2Cl_2 with TiO₂ at 200, 300, and 400 °C.

Figure S2 XRD patterns of TiO₂, TiO₂-V, and TiO₂-T (T=50, 100, 200, 300, and 400).

Figure S3 SEM images of TiO_2 (A), TiO_2 -50 (B), TiO_2 -100 (C), TiO_2 -200 (D), TiO_2 -300 (E), and TiO_2 -400 (F).

Figure S4 Raman spectra of TiO_2 , TiO_2 -V, and TiO_2 -T (T=50, 100, 200, 300, and 400) obtained at different reaction temperature.

Figure S5 EDX image of TiO₂-200.

Figure S6 the nitrogen adsorption-desorption isotherms (A) and the corresponding pore-size distribution curves (B) of TiO_2 and TiO_2 -T (T=50, 100, 200, 300, and 400) obtained at different reaction temperature.

sample	Pore volume (ml/g)	Pore size (nm)	$S_{BET} (m^2/g)$
TiO ₂	0.5385	26.46	55.3
TiO ₂ -V	0.4499	25.95	56.9
TiO ₂ -50	0.4272	26.49	51.3
TiO ₂ -100	0.4250	26.31	51.5
TiO ₂ -200	0.3938	25.96	49.5
TiO ₂ -300	0.4408	25.99	57.3
TiO ₂ -400	0.4127	25.81	57.6

Table S1 summary of the physicochemical characteristics of as-prepared samples.

Figure S7 EPR spectra of TiO₂, TiO₂-V, and TiO₂-T (T=50, 100, 200, 300, and 400) obtained at different reaction temperature determined at 140 K under dark and visible light irradiation.

Figure S8 high-resolution C 1s and Cl 2p XPS spectra of TiO_2 and TiO_2 -T (T=50, 100, 200, 300, and 400) obtained at different reaction temperature.

Figure S9 PL spectra of TiO_2 , TiO_2 -V, and TiO_2 -T (T=50, 100, 200, 300, and 400) obtained at different reaction temperature.

Figure S10 XRD patterns of (A) $TiO_2(001)$, (B) rutile TiO_2 , (C) MoO_3 , (D) WO_3 , and (E) ZnO before and after treatment.

Figure S11 (A) Hydrogen evolution amount of Pt supported samples from ethanol solution (10 vol%) under visible light irradiation. (B) Hydrogen evolution amount of TiO₂, TiO₂-T (T=50, 100, 200, 300, and 400) obtained at different reaction temperature, TiO₂-V, and TiO₂-H from ethanol solution (10 vol%) solar light irradiation. (C) Hydrogen evolution amount of Pt supported samples from ethanol solution (10 vol%) under solar light irradiation.

Figure S12 hydrogen evolution amount of (A) TiO_2 , TiO_2 -T (T=50, 100, 200, 300, and 400) obtained at different reaction temperature, TiO_2 -V and TiO_2 -H and (B) the corresponding Pt supported samples from EDTA-2Na solution (1.0 mg/ml) under visible light irradiation. Hydrogen evolution amount of (C) TiO_2 , TiO_2 -T (T=50, 100, 200, 300, and 400) obtained at different reaction temperature, TiO_2 -V and TiO_2 -H and (D) the corresponding Pt supported samples from EDTA-2Na solution (1.0 mg/ml) under solar light irradiation.

Figure S13 cycling test of TiO₂-200 for photocatalytic H₂ generation form EDTA-2Na solution under visible light irradiation (λ >420 nm).

Figure S14 TEM (A and B) and HRTEM (C) images of Pt nanoparticles supported TiO_2 -200.