Supporting Information

Atmospheric pressure synthesis of nano-scaled SAPO-34 catalysts for

effective conversion of methanol to light olefins

Meng Lyu,^{a,b} Chengguang Yang,^{*b} Ziyu Liu,^b Ting Wang,^b Hongjiang Liu,^a Xinqing Chen,^{*b,d} and Yuhan Sun ^{b,c,d}

^a.Department of Chemistry, School of Science, Shanghai University, Shanghai 200444, PR China

^b·CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China.

^{c.}School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China.

^d University of Chinese Academy of Science, Beijing, 100049, China

Synthesis of Al₂MgO₈Si₂

 $AI_2MgO_8Si_2$ was pre-synthesized by the following method. $AI_2(SO_4)_3 \cdot 18H_2O$ was dispersed in stirring to the solution of Na_2SiO_3 under 85°C. After cooling down to room temperature, MgO, $NaAIO_2$ and NaOH solution were added into the above solution in turn. The mixture was filtered after 1 hour of the reaction, washed three times with deionized water to remove sodium ions and dried overnight to obtain $AI_2MgO_8Si_2$.

Synthesis of SAPO-34 zeolite without MgO

SAPO-34 zeolite without MgO was prepared also under atmospheric pressure. A certain amount of silica resource and aluminum resource was added to TEAOH solution and stirred at room temperature for 2 h. Subsequently, the desired amount of H_3PO_4 , SAPO-34 seeds and deionized water were added in turn and stirred for 6 h. The synthesis gel with a molar composition of 1.0 Al_2O_3 : 0.5 SiO_2 : 1.0 P_2O_5 : 1.0 TEAOH : 50 H_2O was heated to 90°C and kept for 12 h to remove the solvent before it was crushed and sifed to 20-40 mesh. The obtained particles were transferred into a quartz tube and crystallized at 200°C for 24 h in presence of steam under atmospheric pressure. After calcination at 600 °C for 5 h, the aimed sample was obtained.

Synthesis of SAPO-34 zeolite with MgO

For comparasion, SAPO-34 zeolite with MgO was prepared also under atmospheric pressure. A certain amount of silica resource, aluminum resource and MgO was added to TEAOH solution and stirred at room temperature for 2 h. Then desired amount of H_3PO_4 , SAPO-34 seeds and deionized water were added in turn and stirred for 6 h. The synthesis gel with a molar composition of 1.0 Al_2O_3 : 0.5 SiO_2 : 1.0 P_2O_5 : 1.0 TEAOH : 50 H_2O was heated to 90°C and kept for 12 h to remove the solvent before it was crushed and sifed to 20-40 mesh. The obtained particles were transferred into a quartz tube and crystallized at 200 °C for 24 h in presence of steam under atmospheric pressure. After calcination at 600°C for 5 h, SAPO-34 containing MgO was obtained.

 $\label{eq:Fig.S1} \mbox{Fig.S1} \mbox{ XRD patterns of } Al_2 MgO_8 Si_2 \mbox{ (a), and } SAPO-34 \mbox{ synthesized without } MgO, \mbox{ with } MgO \mbox{ and } with \mbox{ } Al_2 MgO_8 Si_2 \mbox{ (b).}$

Fig. S2 XRD pattern and SEM image of SP34-CS.

Fig. S3 Photographs and SEM images of dried gels before (a) and after (b) crystallization.

Fig. S4 XRD pattern of SP34-AS-3 before and after hydrothermally treated at 600 and 650 $^\circ$ C for 2 h .

Fig. S5 $\rm NH_3\text{-}TPD$ profiles of SP34-AS, SP34-AS-1, SP34-AS-3, SP34-AS-5 and SP34-CS.

Fig. S6 TG curves of SP34-AS, SP34-AS-1, SP34-AS-3, SP34-AS-5 and SP34-CS.

Sample	SP34-AS	SP34-AS-1	SP34-AS-3	SP34-AS-5	SP34-CS
Acid site density (mmol/g)	0.23	0.33	0.28	0.34	0.43

Table S1 The acid site density of prepared samples

			, , ,				,				
Catalysts	Lifetime /minª	C1	C ₂ ⁼	C ₂	C₃⁼	C ₃	C ₄	C4=	C ₂ ⁼ +C ₃ ⁼	C ₂ =~C ₄ =	Carbon balance
SP34-CS	450	1.64	23.51	1.73	34.31	14.05	4.48	13.55	57.82	71.37	98%
SP34-AS	120	1.44	28.61	0.35	39.80	4.67	4.45	14.50	68.41	82.91	95%
SP34-AS-1	240	1.34	27.24	0.73	40.71	4.34	4.75	14.56	67.95	82.51	97%
SP34-AS-3	330	1.58	31.03	0.56	39.61	4.13	4.33	12.96	70.64	83.60	98%
SP34-AS-5	60	1.01	27.07	0.39	40.09	3.94	5.10	15.97	67.16	83.13	94%

 Table S2
 Product selectivity (%) of MTO reaction over various catalysts.

Reaction conditions : WHSV = 0.5 h⁻¹, T = 400°C, catalyst weight = 1.0 g and 1 atm.

^a Catalyst lifetime is defined as the reaction duration with methanol conversion higher than 95%.

 Table S3
 Variation of coke formation in methanol conversion over SAPO-34.

Samples	SP34-AS	SP34-AS-1	SP34-AS-3	SP34-AS-5	SP34-CS
coke (%, g/gcat)	8.05	12.93	7.38	5.91	18.34
TOS (min)	120	240	330	60	450
R _{coke} (mg/min)	0.67	0.54	0.22	0.99	0.41
P _{coke} (g/gMeOH)	0.08	0.06	0.03	0.12	0.05

R_{coke} (mg/min) = Coke amount (mg) / reaction time (min),

 P_{coke} (g/g) = Coke amount (g) / methanol feedstock (g).