Supporting Information

Layered Bi₂Te₃ Nanoplates/Graphene Composites with High

Gravimetric and Volumetric Performance for Na-Ion Storage

Dianding Sun, ⁺, ^a Guanjun Zhang, ⁺, ^a Dan Li, ^a Sitong Liu, ^a Xiaolong Jia ^{*}, ^b, ^c and

Jisheng Zhou *, a

^a State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, P. R. China.

^b State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China

^c Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China

⁺Authors with equal contributions

* Corresponding authors: zhoujs@mail.buct.edu.cn (J Zhou); jiaxl@mail.buct.edu.cn (X. Jia)

Supporting Data:

Fig. S1 XRD patterns of pure Bi_2Te_3 and Bi_2Te_3/G composite.

Fig. S2 TG curve of Bi_2Te_3/G composite obtained in air atmosphere from room temperature to 800 °C at a rate of 10 °C min⁻¹.

Fig. S3 XPS survey spectra of the Bi_2Te_3/G composite and GNS.

Fig. S4 Raman spectra of GO, GNS, and Bi₂Te₃/G composite.

Fig. S5 Cross-section SEM images of (a) fresh Bi₂Te₃/G electrode with mass loading of 1.31 mg

and (b) the Bi_2Te_3/G electrode after 50 cycles at 1 A g^{-1} with mass loading: 1.43 mg.

Fig. S6 (a) EIS curves of pure Bi_2Te_3 and Bi_2Te_3/G composite obtained after two cycles at 1 A g⁻¹; and (b) the relationship plots between Z' and $\omega^{-1/2}$ at low-frequency region of pure Bi_2Te_3 and Bi_2Te_3/G composite.

Fig. S7 Equivalent circuit used for fitting of EIS curves (Fig. S5), where R_e is the electrolyte resistance; C_f and R_f are the capacitance and resistance of the surface SEI film formed on the electrodes, respectively; C_{dl} and R_{ct} are the double-layer capacitance and charge-transfer resistance, respectively; Z_w is the Warburg impedance related to the diffusion of Na-ions into the bulk electrodes.

 Table S1 Layered chalcogenide and their corresponding interlayer spacing.

Materials	Interlayer Spacing (Å)	Materials	Interlayer Spacing (Å)	Materials	Interlayer Spacing (Å)
Bi ₂ Se ₃	9.56	PdTe ₂	5.13	TiS ₂	5.70
Bi ₂ Te ₃	10.16	PtS ₂	5.02	TiSe₂	5.99
CoTe ₂	5.40	PtSe₂	5.06	TiTe ₂	6.51
GaTe₃	5.90	PtTe ₂	5.20	VS ₂	5.73
HfS ₂	5.84	ReS ₂	6.08	WS ₂	6.18
HfSe ₂	6.16	RhTe₂	5.41	WSe ₂	6.49
IrTe ₂	5.39	Si ₂ Te ₃	6.74	WTe ₂	7.02
MoS ₂	6.20	SiTe ₂	6.71	ZrS₂	5.81
MoSe ₂	6.50	SnS₂	5.87	ZrSe₂	6.14
MoTe ₂	7.00	SnSe ₂	6.14	ZrSe₃	9.36
NbS ₂	5.96	SnSSe	6.05	ZrTe ₂	6.63
NiTe ₂	5.30	TaS₂	5.86	ZrTe₃	10.01

Table S2 Electrochemical performance comparison of some advanced metal telluride anode

materials for SIBs.

	Valtage	Initial Caulomhia	Initial dischause (shause	Rate performance				
Materials	range (V)	efficiency (%)	Canacity (mAh/g)	Gravimetric	Volumetric	Current	Cycle life	Ref.
	Tange (V)			capacity (mAh/g)	capacity (mAh/cm ³)	rate (A/g)		
FeTe ₂ -rGO			493/373	421		0.1	80	
				384		0.5		
	0.001-3.0	76		362		1		1
				321		2		
				257		3		
	0.001-3.0	71.9	388/279	343		0.2	200	
				306		0.5		
0014-7-				280		1		2
C@MoTe ₂				254		2		
				236		3		
				209		5		
		62.7	541/339	316	639	0.03		3
				292	600	0.06		
Sata /C	0.001-2.5			272	540	0.16	100	
Shie/C				243	490	0.32	100	
				225	455	0.64		
				213	430	0.96		
	0.005-3.0	37.3	843/314	245.2		0.2	500	4
600 T				127.8		0.5		
C@Cu _{1.75} Te				68.1		1		
				44.4		3		
	0.3-2.8	94.1	284.5/267.7	289.5		0.1	5000	5
				281.5		1		
NiTe ₂ @NCNs				275.7		2		
				271.6		5		
Bi2Te3	0.3-2.8	79.3	464/368	247.3	910.0	0.1	50	This
				183.5	675.2	0.2		
				98.4	362.1	0.5		
				50.4	185.4	1.0		work
				26.4	97.1	2.0		
				11.7	43.0	5.0		
Bi₂Te₃/G	0.3-2.8	83.5	498/416	312.9	488.1	0.1	500	
				302.9	472.5	0.2		
				275.2	429.3	0.5		This
				252.2	393.4	1.0		work
				229.2	357.6	2.0		
				203.1	316.8	5.0		

Table S3 Fitting results of the EIS curves for the pure Bi_2Te_3 and Bi_2Te_3/G composite.

Samples	R _e (Ω)	R _f (Ω)	R _{ct} (Ω)	σ (Ω rad ^{1/2} s ^{-1/2})	D (cm ² S ⁻¹)
Bi ₂ Te ₃	14.3	12.5	49.10	93.59	2.36E-18
Bi ₂ Te ₃ /G	13.21	12.64	18.22	48.07	1.45E-16

References

1 J. S. Cho, S. Y. Lee, J.-K. Lee and Y.C. Kang, Acs Appl.Mater.Interfaces, 2016, 8, 21343-

21349.

2 J. S. Cho, H. S. Ju, J.-K. Lee and Y. C. Kang, *Nanoscale*, 2017, **9**, 1942-1950.

- 3 A.-R. Park and C.-M. Park, *ACS Nano*, 2017, **5**, 5884-5901.
- 4 H. Yu, J. Yang, H. Geng and C. Li, *Nanotechnology*, 2017, **28**, 145403.
- 5 D. Sun, S. Liu, G. Zhang and J. Zhou, *Chem. Eng. J.*, 2019, **359**, 1659-1667.