Supporting Information

Metal Organic Frameworks (MOFs) Derived Iron Phosphide as Highly Stable and Efficient Catalyst for Hydrogen Evolution

Qinghua Yang^{1*}, Rongrong Zhang², Wenfeng Wang², Panpan Zhou², Longgang Wang³, Tianyun Chen^{2*}, Huajian Xu^{1*}, Lei Zheng^{1*}

¹ School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui

230009, P. R. China.

² School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei,

Anhui 230009, P. R. China.

³ School of Environmental and Chemical Engineering, Yanshan University, Qinghuangdao,

Hebei 066004, P. R. China.

*Corresponding Authors.

E-mail: <u>yqhsina@126.com</u> (Q. Yang), <u>hjxu@hfut.edu.cn</u> (H. Xu), <u>lzheng@hfut.edu.cn</u> (L. Zheng), <u>t-y99@163.com</u> (T. Chen).

Fig. S1. (a) TEM and (b) SEM image, (c) XRD pattern and (d) FT-IR spectrum of MIL-101(Fe).

Fig. S2. (a) TG curve of MIL-101(Fe), (b) program temperature procedure applied for the synthesis of Fe-NPs/C and FeP-NPs/C.

Fig. S3. (a) XRD pattern and (b) TEM image of Fe-NPs/C.

Fig. S4. (a) Nitrogen adsorption-desorption isotherms of Fe-NPs/C, (b) The BJH pore size distribution of the Fe-NPs/C calculated from the desorption branch of the N_2 isotherm.

Table S1. N₂ adsorption-desorption isotherms of synthetic materials.

	MIL-101(Fe)	Fe-NPs/C	FeP-NPs/C (before acid washing)	FeP-NPs/C (after acid washing)
BET surface area (m ² g ⁻¹)	2978.0	118.5	10.7	114.3
BJH surface area $(m^2 g^{-1})$	2613.2	63.6	8.5	140.8
Pore Volume (cm ³ g ⁻¹)	1.42	0.21	0.023	0.42
Pore Size (nm)	2.17	13.14	10.94	11.81

Fig. S5. Three-dimensional histograms of the corresponding overpotentials, when the current density was 1, 10, 20 and 50 mA cm⁻², respectively.

Fig. S6. The exchange current density (j_0) calculated by the Tafel plots of the Fe-NPs/C, FeP-NPs/C and 20% Pt/C.

The j_0 was calculated by using extrapolation methods. The corresponding j_0 values for Fe-NPs/C, FeP-NPs/C and 20% Pt/C were calculated to be 0.357, 0.925 and 1.389 mA cm⁻², respectively.

Table S2. Summary	v of HER	performance	of the re	ported catalys	sts.
I GOIC SHI Summin	, or men	periormanee	01 110 10	ported editings	·····

Catalyst	Mass density (mg cm ⁻²)	Onest overpotential η(mV)	Overpotential (@10 mA cm ⁻²)	Tafel slope	Reference
				(mv dec ⁻¹)	
(CoP) _x -(FeP) _{1-x}	0.285	15	57	52	[7]
NiS nanoframe	1.00		94	115	[11]
CoMoS ₃	0.5		171	59.9	[13]
MoCx	0.8	25	142	53	[15]
FeP film	1.50	16	84	48.5	[16]
Fe ₂ P	0.36	40		49	[18]
Fe ₂ P-ND/FG	0.41		91	47	[19]
Porous Co Phosphide/phosphate film	0.10	35	175@30 mA cm ⁻²	53	[20]
HNDCM-Co/CoP			135	64	[21]
Ni ₂ P/Ti	2.00	60	138@20 mA cm ⁻²	60	[22]
MoP@PC	0.41	77	153	66	[23]
Cu ₃ P NAs	15.20	62	143	67	[24]
Cu ₃ P@NPPC	0.29		89	76	[25]
WP ₂ SMPs	0.50	54	161	57	[26]
Hydrogenated FeP	0.72		145	64	[27]
CFP-FeP HNA	3.80		31	53	[28]
Carbon shell-coated FeP/C	0.44		71	52	[31]
HM FeP@C	0.72	25	115	56	[32]
FePN Rs/VAGNs/CC	0.776	19	53	42	[43]
P-WN/Rgo	0.34	46	85	54	[81]
FeP NR	0.20	45	120	55	[82]
FeP nanotubes	1.60	35	88	35.5	[83]
Co-NR CNTs	0.28	50	260	69	[84]
Mn-Co-P/Ti			49	55	[85]
Ni ₅ P ₄ -Ni ₂ P nanosheet	0.283	54	120	79.1	[86]
FeP-NPs/C	0.51	23	72	65	This work

Fig. S7. The cyclic voltammograms of (a) FeP-NPs/C, (b) bulk FeP and (c) Fe-NPs/C with the scan rates of 10, 20, 40, 60, 80 and 100 mV s⁻¹, the potential range from 0.1 to 0.4 V vs. RHE.

	Rs (Ω)	Rct (Ω)	CPE1-P	CPE1-T (Ω ⁻¹ cm ⁻² s ⁻ⁿ)
FeP-NPs/C	11.0	25.6	0.76563	3.235 e ⁻³
Bulk FeP	8.5	85.9	0.67677	6.519 e ⁻⁵
Fe-NPS/C	7.2	139.4	0.79130	1.788 e ⁻⁵

Table S3. The fitting results of EIS spectra.

Fig. S8. (a) TEM image and (b) XRD pattern of FeP-NPs/C after stability test.

References

- [S1] H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, *Angew. Chem., Int. Ed.*2015, 54, 6325-6329.
- [S2] H. Du, S. Gu, R.Liu, C. Li, Int. J. Hydrogen Energy, 2015, 40, 14272-14278.
- [S3] Y. Yan, B. Xia, X. Ge, Z. Liu, A. Fisher, X. Wang, Chemistry, 2015, 21 18062-18067.
- [S4] X. Zou, X Huang, A. Goswami, P. Silva, B. R. Sathe, T. Asefa, *Angew. Chem., Int. Ed.,* 2014, 53, 4372-4376.
- [S5] Y. Sun, L. Hang, Q. Shen, T. Zhang, H. Li, X. Zhang, X. Lyu, Y. Li, *Nanoscale*, 2017, 9, 16674-16679.
- [S6] X. Wang, Y. V. Kolen'ko, X. Bao, K. Kovnir, L. Liu, Angew. Chem. Int. Ed. 2015, 54, 8188-8192.