Electronic Supplementary Information

Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell application

G. D. Bhowmick,^a E. Kibena-Põldsepp,^b L. Matisen,^c M. Merisalu,^{b,c} M. Kook,^c M. Käärik,^b J. Leis,^b V. Sammelselg,^{b,c} M. M. Ghangrekar,^d and K. Tammeveski^{*b}
^aDepartment of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, 721302, India
^bInstitute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
^cInstitute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
^dDepartment of Civil Engineering, Indian Institute of Technology Kharagpur, 721302, India

A comparison of the RDE results

Fig. S1 Comparative RDE voltammetry curves for O₂ reduction on FePc/CDC (loading of 0.4 mg cm⁻²) and Pt/C (Pt loading of 40 μ g cm⁻²) catalysts recorded in O₂–saturated 0.1 M PBS containing 0.1 M K₂SO₄ (pH 7) (ω = 1900 rpm, ν = 10 mV s⁻¹).

<u>Cost analysis</u> (INR - \gtrless , USD - \$ and $1 \gtrless = 0.014 \$$) Total cathode surface area = 120 cm²

Cost calculation for M-1 (with FePc/MWCNT) Cost of FePc/MWCNT = 85.2 g^{-1} Catalyst loading = 0.2 mg cm^{-2} Total catalyst required = 24 mgTotal cost of FePc/MWCNT used = $85.2 \text{ g}^{-1} \times 24 \text{ mg} = 2.05 \text{ s}$ (A1)

^{*}Corresponding author. Tel.: +372 7375168; fax: +372 7375181. E-mail: kaido.tammeveski@ut.ee (K. Tammeveski).

Component used for preparation of catalyst ink
Cost of activated carbon, @0.5 mg cm⁻² = 60 mg = 0.003 \$
Nafion 117 dispersion (5% in alcohol) = 3.3 \$
Acetone as solvent = 1.146 \$
Total cost = 4.45 \$ (B)
Cost for reactor and electrode
Cost of clayware reactor is ₹ 10/- and cost of required carbon felt is approx. ₹ 80 /Total = ₹ 90/- ≈ 1.35 \$ (C)
So, Total cost of construction of M-1 = A1+B+C ≈ 7.85 \$

Cost calculation for M-2 (with CoPc/MWCNT) Cost of CoPc/MWCNT = $81.5 \ \text{g}^{-1}$ Catalyst loading = $0.2 \ \text{mg} \ \text{cm}^{-2}$ Total catalyst required = $24 \ \text{mg}$ Total cost of CoPc-MWCNT used = $85.2 \ \text{g}^{-1} \times 24 \ \text{mg} = 1.96 \ \text{s}$ (A2) So, Total cost of construction of M-2 = A2+B+C \approx 7.76 $\ \text{s}$

Cost calculation for M-3 (with FePc/CDC)

Cost of FePc-CDC = $31.5 \ \text{g}^{-1}$ Catalyst loading = $0.4 \ \text{mg cm}^{-2}$ Total catalyst required = $48 \ \text{mg}$ Total cost of FePc-MWCNT used = $31.5 \ \text{g}^{-1} \times 48 \ \text{mg} = 1.51 \ \text{s}$ (A3) So, Total cost of construction of M-3 = $A3+B+C \approx 7.31 \ \text{s}$

32.7 mW m⁻² power is generated from M-1 having net power output = $(32.7 \times 0.120)/7.85 =$ **0.50 mW \$**⁻¹ 42.2 mW m⁻² power is generated from M-2 having net power output = **0.65 mW \$**⁻¹ 58.5 mW m⁻² power is generated from M-3 having net power output = **0.96 mW \$**⁻¹ 62.1 mW m⁻² power is generated from M-Pt having net power output = **0.62 mW \$**⁻¹

Ratio of the cost of Pt to catalyst FePc/MWCNT = $(6.30/1.96) \approx 3.2$ Ratio of the cost of Pt to catalyst CoPc/MWCNT = $(6.30/2.05) \approx 3.1$ Ratio of the cost of Pt to catalyst FePc/CDC = $(6.30/1.51) \approx 4.2$