Spherical graphite produced by waste semi-coke with enhanced properties as anode material for Li-ion batteries

Ming Shi, Zige Tai, Na Li, Kunyang Zou, Yuanzhen Chen, Junjie Sun, Yongning Liu*

State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China

*Corresponding author E-mail address: <u>ynliu@mail.xjtu.edu.cn</u>

Fax: +86 29 8266 3453; Tel: +86 29 8266 4602

Fig. 1 N_2 absorption/desorption profiles of (a) pristine semi-coke (SC); (b) synthetic graphite without Si (PG); and (c) synthetic graphite with 10% Si at 2300 °C (SG).

	Content percentage / wt %								
samples	В	Si	Al	Ca	Fe	K	Na 0.09 < 0.03 <	Mg	
SC	<0.1	4.25	5.5	3.3	0.8	0.3	0.09	<0.1	
SG	<0.1	1.01	1.9	0.1	<0.1	0.02	0.03	<0.1	

Table 1 The percentage of impurity of pristine SC and SG (10% Si at 2300 °C).

Materials	Specific Capacity	Rate capability	Cyclic retention	Ref.
	[mA h g ⁻¹]	[mA h g ⁻¹]		
Spherical graphite produced by waste semi-coke	347.06 at 0.05C	329.8 at 0.1C; 317.4 at 0.5 C and 262.3 at 1C	97.7% at 0.5C after 700 cycles	This work
Iron-catalyzed graphitic materials from biomass	306 at 0.1C	150 at rate of 2C	Over 90% after 200 cycles	1
Carbonaceous composites prepared by the mixture of graphite, cokes, and petroleum pitch.	312 at 0.2C	149 at 1 C; 78 at 5C	-	2
An oxidation procedure to by-products of the petroleum industry	385 after 20 cycles at C/50	-	-	3
Needle coke refined by molten caustic leaching	560.137 at 0.9 mA	-	98.5% after 50 cycles	4
Surface-fluorinated petroleum cokes	306 at 60 mA g ⁻¹	-	98% after 10th cycles	5
Anthracite	370 at 30 mA g ⁻¹	-	Nearly 100% after 20 cycles	6
Coating of graphite anode with coal tar pitch	361 at 0.1C	361 at 0.2C; 357 at 0.5C; 355 at 1C; 348 at 2C; 298 at 5C	83% at 5C	7
Porous carbon microspheres anode materials from fine needle coke powders	394 at 50 mA g ⁻¹	315 at 500 mA g ⁻¹ ; 160 at 1000 mA g ⁻¹	range from 340 to 350 mA h g ⁻¹ at 50 mA g ⁻¹ after 100 cycles	8
Synthetic graphite from bituminous coal	310.3 at 0.1C	143.9 at 5C	Over 95.3% after 100 cycles	9
Synthetic graphite from semi- coke powders	351.5 at 0.1C	322 at 1C	97.6% after 300 cycles at 1C	10
Carbon nanofiber/graphite compounds	359 at 0.1C	299 at 1C	99.4% after 50 cycles at 0.1C and 90% after 300 cycles at 1C	11
Different series of coal ash treated at 2700 °C	-	-	310 mA h g ⁻¹ after 50 cycles at 0.1C	12

Table 2 The SG capacity values with that of similar materials published in the literature.

References

1 G. M. Aurora, M. F. Julian, R. Mirco, H. Andreas, W. Martin, P. Tobias and R. R. Joaquin, Iron-Catalyzed Graphitic Carbon Materials from Biomass Resources as Anodes for Lithium-Ion Batteries, ChemSusChem, 2018, 11, 2776-2787.

2 D. Y. Park and D. Y. Park, High rate capability of carbonaceous composites as anode electrodes

for lithium-ion secondary battery, J. Ind. Eng. Chem., 2009, 15,588-594.

- 3 A. Concheso, R. Santamaria and R. Menendez, Effect of oxidation on the performance of lowtemperature petroleum cokes as anodes in lithium ion batteries, J. Appl. Electrochem., 2009, 39, 899-906.
- 4 H. G. Kang, J. K. Park and B. S. Han, Electrochemical characteristics of needle coke refined by molten caustic leaching as an anode material for a lithium-ion battery, J. Power Sources, 2006, 153, 170-173.
- 5 T. Nakajima, J. L. Li and K. Naga, Surface structure and electrochemical properties of surfacefluorinated petroleum cokes for lithium ion battery, J. Power Sources, 2004, **133**, 243-251.
- 6 Y. J. Kim, H. J. Yang and S. H. Yoon, Anthracite as a candidate for lithium ion battery anode, J.Power Sources, 2003, 113, 157-165.
- 7 Y. J. Han, J. Kim and Y. J. Seong, Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch, Carbon, 2015, **94**, 432-438.
- 8 W. F. Ren, Z. L. Zhang and Y. H. Wang, Preparation of porous carbon microspheres anode materials from fine needle coke powders for lithium-ion batteries, RSC Adv., 2015, **5**, 11115-11123.
- 9 B. L. Xing, C. T. Zhang, Y. J. Cao, G. X. Huang, Q. R. Liu, C. X. Zhang, Z. F. Chen, G. Y. Yi, L. J. Chen and J. L. Yu, Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries, Fuel Pro. Tech., 2018, **172**, 162-171.
- 10 M. Shi, Y. Z. Chen, H. Wen and Y. N. Liu, One-step heat treatment to process semi-coke powders as an anode material with superior rate performance for Li-ion batteries, RSC Adv.,

2018, **8**, 41207-41217.

- 11 S. M. Jang, J. Miyawaki and M. Tsuji, Preparation of a carbon nanofiber/natural graphite composite and an evaluation of its electrochemical properties as an anode material for a Li-ion battery, New Res. Carbon Mater., 2010, **25**, 89–96.
- 12 I. Camean and A. B. Garcia, Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: Performance as anodes in lithium-ion batteries, J. Power Sources, 2011, 196, 4816–4820.