Electronic Supplementary Information

Ni loaded on N-doped carbon encapsulated tungsten oxide nanowires

as an alkaline-stable electrocatalyst for water reduction

Cuncai Lv,^a Guoying Yan,^a Xiaobo Wang,^a Linjie Gao,^a Shichen Xu,^b Xingyuan San,^a Shufang Wang^{*a}, Yaguang Li^{*a}, Zhipeng Huang^{*b}

^aKey Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China. E-mail: <u>sfwang@hbu.edu.cn</u>, yaguang_1987@126.com. ^bSchool of Chemical Science and Engineering, Institute for Advanced Study, Tongji

University, Shanghai, 200092, P. R. China. E-mail: zphuang@tongji.edu.cn.

Figure S1. (a) Low- and (b) high-magnification SEM images of WO_x precursor loaded on CFP.

Figure S2. XRD pattern of WO_x precursor. The peaks of CFP are marked by blue square.

Figure S3. Optical photograph of the (a) WO_x precursor, (b) WO_x , (c) O_v - $WO_x@NC$.

Figure S5. Raman pattern of O_v -WO_x@NC and WO_x loaded on Ti foil.

Figure S6. SEM image of the pristine CFP.

Figure S7. Diameter distribution of O_v -WO_x@NC. The dark cyan line shows the Gaussian fitting of data

Catalysta	Atomic (%)						
Catalysis	W	Ν	С	0	Ni		
WO _x	22.36		33.06	44.59			
O _v -WO _x @NC	34.36	5.16	24.75	35.74			
O _v -WO _x @NC-Ni	30.01	4.51	22.94	37.06	5.49		

Table S1. The amount of W, O, N, C and Ni in the composites detected by EDS analysis

Figure S8. Diameter distribution of Ni nanoparticles. The dark cyan line shows the Gaussian fitting of data

Figure S9. (a) Dark-field STEM image of O_v -WO_x@NC and corresponding elemental mapping images of (b) W, (c) O, (d) C and (e) N.

Figure S10. (a) Dark-field STEM image of O_v -WO_x@NC-Ni and corresponding elemental mapping images of (b) W, (c) O, (d) Ni, (e) C and (f) N.

Figure S11. XPS spectra of WO_x and O_y-WO_x@NC.

Catalysta	Atomic (%)						
Catalysts	Atom W N O 15.32 21 9.02 8.79 58 ir 7.66 9.5 58 11.61 7.53 38 5.82 6.47 52	С	0	Ni			
WO _x	15.32		21.85	62.83			
O _v -WO _x @NC	9.02	8.79	58.2	23.99			
O _v -WO _x @NC-2Months-Air	7.66	9.5	58.91	23.93			
O _v -WO _x @NC-5h-H ₂ O ₂	11.61	7.53	38.72	42.14			
O _v -WO _x @NC-Ni	5.83	6.47	52.48	28.84	6.37		
O _v -WO _x @NC-Ni-it	4.55	6.77	42.99	37.08	8.61		

Table S2. The amount of W, O, N, C and Ni in the composites detected by XPS analysis

		Pe	Peaks		rea	
Samples	species	$4f_{7/2}$	$4f_{5/2}$	$4f_{7/2}$	$4f_{5/2}$	W ³⁺ / W ⁶⁺
WO	W^{5+}	34.6	36.7	4713	3535	1.12.00
WO _x	W^{6+}	36.2	38.3	65119	48839	1.15.82
	W^{5+}	34.3	36.4	13000	9750	1.1.21
$O_v - WO_x @INC$	W^{6+}	35.9	38.0	17242	12932	1.1.51
O _v -WO _x @NC-	W^{5+}	34.5	36.7	7522	5641	1.1.20
2Months-Air	W^{6+}	35.4	37.5	10405	7804	1.1.38
O _v -WO _x @NC-	W^{5+}	34.7	36.9	11852	8889	1.1.42
5h-H ₂ O ₂	W^{6+}	35.5	37.6	16999	12750	1:1.43
O _v -WO _x @NC-	W^{5+}	34.2	36.3	9001	6750	1.1.20
Ni	W^{6+}	35.9	38.0	11295	8471	1:1.20
O _v -WO _x @NC-	W^{5+}	34.8	36.9	5500	4125	1.1 55
Ni-it	W^{6+}	35.5	37.6	3540	2655	1.1.33

Table S3. Fitting parameters (peak position, peak area and species percentage) for bothW $4f_{7/2}$ and W $4f_{7/2}$ spectra taken on the resultant samples.

Samples	species	Peaks	Area	O _v /O
	$O_{\rm v}$	531.7	22001	
WO _x	W-O-W	530.9	76487	0.192
	O-C	533.0	16002	
	O_v	531.6	12001	
O _v -WO _x @NC	W-O-W	530.5	22497	0.329
	O-C	533.1	1999	
	O_v	531.5	7675	
$O_v - WO_x @NC -$	W-O-W	530.5	14501	0.338
2Monuis-Ali	O-C	533.1	499	
	$O_{\rm v}$	531.5	14121	
O_v -w $O_x(a)$ NC 5h-H ₂ O ₂ -	W-O-W	530.4	26941	0.327
	O-C	533.1	2096	
	$O_{\rm v}$	531.6	15770	
O _v -WO _x @NC-	W-O-W	530.5	21001	0.224
Ni	O-C	533.2	8409	0.334
_	O-Ni	529.7	2001	
O _v -WO _x @NC Ni-it	$O_{\rm v}$	531.7	12646	
	W-O-W	530.7	15626	0 274
	O-C	533.0	3532	0.374
	O-Ni	529.8	1999	

Table S4. Fitting parameters (peak position, peak area and species percentage) for oxygen vacancies (O_v) , W-O-W and O-C taken on the resultant samples.

Figure S12. EPR spectra of WO_x and O_v - $WO_x@NC$ at room temperature.

Figure S14. (a) Low- and (b) high-magnification SEM images of Ni.

Reference	Catalyst	Mass density (mg cm ⁻²)	η ₂₀ (mV)	$\begin{array}{c} \eta_{100} \\ (mV) \end{array}$	Tafel slope (mV/dec)	Counter electrode	Electrolyte
This work	O _v -WO _x @NC- Ni	7.2	67	164	62	Graphite rod	1 M KOH
J. Mater. Chem. A, 2019, DOI: 10.1039/C9TA03652K	M-Co ₃ O ₄ layer	0.76	115	203	63	Graphite rod	1 M KOH
J. Mater. Chem. A, 2017, 5, 9655–9660	WO ₂ HN/NF	1.57	75		43	Graphite plate	1 M KOH
ACS Catal. 2018, 8, 5062-5069	Co/Co ₂ Mo ₃ O ₈	2.5	50	210	33	Graphite rod	1 M KOH
Inorg. Chem. Front., 2018,5, 3042-3045	3D Ni ₃ N-CeO ₂ nanohybrid		105	200	122	Graphite plate	1 M KOH
Nano Energy, 2018, 43, 103–109	NiO NRs-m- O _v	0.2	150	280	100	Graphite rod	1 M KOH
Nat. Commun,2015, 6, 7261	Lithium- induced NiFeOx nanoparticles	1.6	133			Pt wire	1 M KOH
Adv. Energy Mater. 2016, 6, 1600528	mesoporous MoO _{3-x}	0.2	170		56	Graphite rod	0.1 M KOH
Nanoscale, 2017, 9, 4409–4418	NiO@NF	3.5	420		231	Graphite rod	1 M KOH
J. Am. Chem. Soc. 2015, 137, 2688-2694	Cobalt-cobalt oxide/N-doped carbon hybrids	0.42	280		115	Pt plate	1 M KOH
Energy Environ. Sci., 2017, 10, 2563	P-Co ₃ O ₄	0.4	135	165	52	Graphite rod	1 M KOH
Angew. Chem. Int. Ed. 2017, 56, 1324-1328	Hollow Co ₃ O ₄ microtube arrays		190	290	98	Pt wire	1 M KOH
Inorg. Chem.2018, 57, 548-552	Ni ₂ P-CeO ₂ /Ti mesh	1.58	84	160	87	Platinum wire	1 M KOH
Nanoscale, 2018, 10, 2213-2217	CeO ₂ -Cu ₃ P/NF		148	275	132	Graphite sheet	1 M KOH

Table S5. Performances of representative highly efficient TMOs-based HER catalysts

 in alkaline media.

Figure S15. XRD pattern of O_v-WO_x@NC-Ni after the electrochemical measurement.

Figure S16. XPS pattern of O_v-WO_x@NC-Ni after the electrochemical measurement.

Figure S17. SEM pattern of O_v-WO_x@NC-Ni after the electrochemical measurement.

Figure S18. XRD pattern of WO_x-Ni.

Figure S20. Polarization curves corresponding to different LSV activation scans of (a) O_v -WO_x@NC, (b) WO_x, (c) O_v -WO_x@NC-Ni and (d) WO_x-Ni.

Figure S21. The XRD and XPS spectra of O_v -WO_x@NC-2Months-Air and O_v -WO_x@NC-5h-H₂O₂.

Figure S22. Equivalent circuit used to fit the EIS data. R_s is the overall series resistance, CPE₁ and R_1 are the constant phase element and resistance describing electron transport at GCE/electrocatalyst interface, respectively, CPE_{dl} is the constant phase element of the electrocatalyst/electrolyte interface, and R_{ct} is the charge transfer resistance at electrocatalyst /electrolyte interface.

Sample	R _s	Q1	n_1	R_1	Q _{ct}	n _{ct}	R _{ct}
	(Ω)	(F cm ⁻² S ⁿ⁻¹)		(Ω)	$(F \text{ cm}^{-2} \text{ S}^{n-1})$		(Ω)
WO _x	1.958	1.605e-3	0.7521	2.041	0.04355	0.2032	570.2
O _v -WO _x @NC	1.062	1.199e-6	1	2.054	0.01373	0.7535	295.4
Ni	1.598	7.566e-6	0.8635	1.866	0.001688	0.7888	30.35
O _v -WO _x @NC-Ni	1.069	9.471e-7	0.9286	2.52	0.046	0.832	12.09

Table S6. The fitting results of EIS spectra in basic solution.

Figure S23. Cyclic voltammetry scans of (a) WO_x , (b) O_v - $WO_x@NC$, (c) Ni and (d) O_v - $WO_x@NC$ -Ni.

Figure S24. (a) Polarization curves normalized by ECSA: the scatters are experimental data, and lines are fitting curves using the dual-pathway kinetic model. (b) Free energy diagram in 1 M KOH fitted from J_{ECSA} .

Sample	$\Delta G \stackrel{* 0}{_{- V}}$	$\Delta G \stackrel{* 0}{+ H}$	$\Delta G \stackrel{* 0}{+ T}$	$\Delta G_{ad}^{\ 0}$	$\Delta G \stackrel{* 0}{+ H} - \Delta G \stackrel{0}{ad}$
-	(meV)	(meV)	(meV)	(meV)	(meV)
O _v -WO _x @NC	90	593	962	81	512
Ni	110	420	1043	64	359
Ov-MOx@NC-Ni	107	417	1041	66	351

Table S7. The fitting results of free energies corresponding to different steps during
 the HER.

 ΔG_{-V}^{*0} the standard activation free energy for Volmer step.

 ΔG_{+H}^{*0} the standard activation free energy for Heyrovsky step.

 $\Delta G \stackrel{* 0}{+ T}$: the standard activation free energy for Tafel step.

 ΔG_{ad}^{0} : the standard free energy of adsorption for the reaction intermediate.

Figure S25. (a) Polarization curves of O_v -WO_x@NC-Ni-XX. XX is the electrodeposition time of Ni. O_v -WO_x@NC-Ni-0 is O_v -WO_x@NC mentioned above, and O_v -WO_x@NC-Ni-400 is also named as O_v -WO_x@NC-Ni. Cyclic voltammetry scans of (b) O_v -WO_x@NC-Ni-200 and (c) O_v -WO_x@NC-Ni-600. (d) Estimation of the C_{dl} through plotting the current density difference ($\Delta J = 1/2(J_a-J_c)$) at 0.15 V vs. RHE obtained from the CV against scan rate to fit a linear regression.

Figure S26. SEM iamges of (a) O_v -WO_x@NC-Ni-0 (i.e. O_v -WO_x@NC), (b) O_v -WO_x@NC-Ni-200, (c) O_v -WO_x@NC-Ni-400 (i.e. O_v -WO_x@NC-Ni) and (d) O_v -WO_x@NC-Ni-600.