Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

[Supporting information]

Development of an effective bi-functional Ni-CaO catalyst-sorbent for the sorptionenhanced water gas shift reaction through structural optimization and the controlled deposition of a stabilizer by atomic layer deposition

Sung Min Kim, Andac Armutlulu, Agnieszka M. Kierzkowska, Davood Hosseini, Felix Donat and Christoph Müller*

Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland

> *Corresponding author. Tel.: +41 44 632 3440. E-mail address: muelchri@ethz.ch (Prof. Christoph Müller).

Sorbent	Ca : Al (molar ratio)	Surface area [m²/g _{sorbent}]	Pore volume [cm ³ /g _{sorbent}]
Al (2 nm)-CaCO ₃ _hollow	90 : 10	13	0.132
Al (10 nm)-CaCO ₃ _limestone	89:11	5	0.051
Al (10 nm)-CaCO ₃ _bulk	88:12	4	0.072
Al (1 nm)-CaCO ₃ _NP	90 : 10	2	0.020

 Table S1.
 Textural properties of cycled hollow and benchmark CaO-based CO₂ sorbents.^[a]

[a] Textural properties after 30 cycles of carbonation and calcination (in a calcined form)

 Table S2.
 Textural properties of freshly calcined and cycled bifunctional Ni-CaO catalystsorbent

Materials	SE-WGS Cycles	Surface area [m ² /g _{sorbent}]	Pore volume [cm ³ /g _{sorbent}]
Ni/Al (0 nm)-CaCO ₃ _hollow ^a	0	15	0.175
Ni/Al (0 nm)-CaCO ₃ _hollow	10	3	0.021
Ni/Al (2 nm)-CaCO ₃ _hollow ^a	0	18	0.190
Ni/Al (2 nm)-CaCO ₃ _hollow	10	13	0.120

[a] Freshly calcined materials.

Figure S1. Thermal decomposition profile of the CNS template and CaCO₃ deposited onto CNS.

Figure S2. DRIFT spectra of A1 (0 nm)-CaCO₃ hollow and hollow CaCO₃ after one half and one full ALD cycles.

Figure S3. In situ XRD diffractograms of (a) Al (0 nm)- and (b) Al (2nm)-CaCO₃_hollow during calcination in the temperature range of 600–900 °C: (■) calcite (CaCO₃), (●) lime (CaO) and (◆) tricalciumaluminate (Ca₃Al₂O₆).

Figure S4. XRD diffractograms of benchmark materials and calcined materials at 900 °C in the presence or absence of an Al₂O₃ coating: (■) calcite (CaCO₃), (●) lime (CaO), (▲) portlandite (Ca(OH)₂), and (◆) tricalciumaluminate (Ca₃Al₂O₆).

Figure S6. BJH pore distribution of the calcined benchmarks: (a) limestone and (b) bulk $CaCO_3$ in the absence (i.e., Al (0 nm)) and presence of a 2 nm-thick Al_2O_3 overcoat.

Figure S7. CO₂ capture performance of (a) Al₂O₃-coated, hollow CaO with different thicknesses of an ALD-grown Al₂O₃ layer, and (b) Al (2 nm)-CaO. The dashed line (-----) represents the cyclic CO₂ capture performance of limestone-derived CaO, i.e., Al (0 nm)-CaO limestone, and the solid line (----) gives the maximum theoretical CO₂ uptake of pure CaO. Carbonation was performed at 650 °C for 20 min in 20 vol.% CO₂/N₂ (150 ml/min) and calcination was performed at 900 °C for 15 min in pure CO₂ stream (30 ml/min).

Figure S8. HAADF-STEM with EDX analysis of calcined Al (10 nm)-Ca_limestone and Al (10 nm)-CaO_bulk.

Figure S9. HAADF STEM with EDX analysis of Ni/Al (0 nm)-CaO_hollow and Ni/Al (2 nm)-CaO_hollow after 10 cycles of SE-WGS.