Supplementary Information

Production of formate from CO₂ reduction and its application in energy storage

Hang Xiang^a, Hamish Andrew Miller^b, Marco Bellini^b, Henriette Christensen^a, Keith Scott ^a, Shahid Rasul^{a,c}, Eileen H. Yu^a *

^a School of Engineering, Newcastle University, Newcastle Upon Tyne, UK

^b Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy

^c Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, UK *Corresponding author: (<u>eileen.yu@ncl.ac.uk</u>)

Paper	Reactor, Membrane,	Catalyst/cathode	Potential		Current	Formate	Formate production	
	Catholyte, CO ₂ flow.		Cell (V)	Cathodic (V vs. RHE)	(mA cm ⁻²)	FE	Yield per hour (mg/h)	Conc. Per hour (mM/h)
Ref. 1	H-cell +GDE holder, 0.5M KHCO ₃ ,	GDL and Sn-loading copper mesh (rolling press) S _{geo} : 7 cm ²		-0.67	Ap3.49	Ap. 43%	Cal. 9.01	Catholyte vol. N.G.
	CO ₂ flow 30ml/min.			-0.87	Ap 13.48	Ap. 46%	Cal. 37.26	Catholyte vol. N.G.
				-1.07	Ap 22.44	Ap. 78%	Cal. 105.17	Catholyte vol. N.G.
				-1.27	Ap 23.85	Ap. 65%	Cal. 93.15	Catholyte vol. N.G.
				-1.47	Ap 36.05	Ap. 43%	Cal. 93.15	Catholyte vol. N.G.
Ref. ²	GDE flow cell	Sn-GDE with thin SnOx	-0.8	Ap0.05	Ap1	Ap. 55%	Cal. 1.89	Cal. 0.10
	7ml/min 0.1M KHCO ₃ ,	nanolayer	-1.2	Ap0.45	Ap3	Ap. 64%	Cal. 6.60	Cal. 0.34
	CO ₂ flow 45ml/min	S _{geo} : 4 cm ²	-1.6	Ap0.85	Ар7	Ap. 73%	Cal. 17.55	Cal. 0.91
			-2.0	Ap1.25	Ap15	Ap. 80%	Cal. 41.21	Cal. 2.13
Ref. ³	Microfluid GDE flow	Pb/PtRu-GDL	2.5	Ap1.1	Ap20	Ap. 60%	Cal. 1.03	Cal. 0.75
	cell	S _{geo} : 0.1 cm ²	3	Ap1.35	Ap55	Ap. 93%	Cal. 4.39	Cal. 3.18
	0.5 ml/min		3.5	Ap1.6	Ap150	Ap. 90%	Cal. 11.59	Cal. 8.40
	Catholyte(pH = 2) CO_2 flow 50 mL/min		4	Ap1.9	Ap350	Ap. 92%	Cal. 27.64	Cal. 20.03
Ref. ⁴	GDE flow cell	Sn-GDE		-0.6	Ap3	Ap. 20%	Cal. 5.25	Cal. 0.19
	10ml/min 0.5M	S _{geo} : 10.2 cm ²		-0.8	Ap5	Ap. 55%	Cal. 24.08	Cal. 0.87
	NaHCO ₃ ,			-1.0	Ap10	Ap. 65%	Cal. 56.92	Cal. 2.06
	CO_2 flow 10ml/min.			-1.2	Ap18	Ap. 60%	Cal. 94.57	Cal. 3.43
Ref. ⁵	H-cell +GDE holder, 130 ml 0.1M Na ₂ SO ₄ , CO ₂ flow 10ml/min	In/C-GDL S _{geo} : 0.95 cm ²		Ap1.2	-7.5	38%	Cal. 2.32	Cal. 0.38

 Table S1 Summary of eCO₂R studies in terms of formate production

Ref. ⁶	2C cell,	Hierarchical Cu pillar		-0.2	Ap0.4	Ap. 9.5%	Cal. 0.03	Cal. 0.07
	10ml CO ₂ -bubbled 0.1	electrode		-0.4	Ap0.9	Ap. 24%	Cal. 0.19	Cal. 0.40
	M KHCO ₃ ,	S _{geo} : 1 cm ²		-0.6	Ap1.9	Ap. 26%	Cal. 0.42	Cal. 0.92
	CO_2 flow 6 ml/min.			-0.8	Ap3.4	Ap. 22%	Cal. 0.64	Cal. 1.40
				-1.0	Ap4.6	Ap. 18%	Cal. 0.71	Cal. 1.55
Ref. ⁷	H-type cell,	SnOx(100-8)/GDL						
	75ml CO ₂ -bubbled 0.5	S _{geo} : 4 cm ²		An -1	-1/	83.4%	Cal 40.09	Cal. 11.62
	M KHCO ₃ ,				14	03.470	Cal. 40.05	Cal. 11.02
	CO ₂ flow not given							
Ref. ⁸	GDE cell,	Sn-NPs/GDL						
	50ml 0.5M KHCO3	S _{geo} : 4 cm ²	Ap.		-10	Ap. 90%	Cal. 33.12	Cal. 14.4
	circulate		-3.1					
Pof 9				0.05	An 12	An E0%		
Nel.	75ml CO hubbled 0.5	on CDI		-0.95	Ap1.5	Ap. 50%		Cal. 0.047
	M KHCO (PH-7 Λ)	$S : 4 \text{ cm}^2$		-1.05	Ар3.0	Ap. 55%	Cal. 5.66	Cal. 1.642
	CO_2 flow not given	J _{geo} . 4 Cm		-1.15	Ар6.0	Ap. 70%	Cal. 14.42	Cal. 4.180
				-1.25	Ap9.3	Ap. 77%	Cal. 24.59	Cal. 7.128
				-1.35	Ap13.0	Ap. 60%	Cal. 26.78	Cal. 7.764
Ref. ¹⁰	H-cell,	Hierarchical		Ap0.38	Ap2	Ap. 28%	Cal.	Cal. 2.09
	10ml CO ₂ -saturated	Mesoporous SnO2		Ap0.58	Ap7	Ap. 35%	Cal. 4.21	Cal. 9.14
	0.5M NaHCO ₃ (pH 7.2), No CO ₂ flow during eCO ₂ R	Nanosheets on Carbon Cloth S _{geo} : 2 cm ²		Ap0.78	Ap24	Ap. 46%	Cal. 18.96	Cal. 41.21
				Ap0.98	Ap50	Ap. 90%	Cal. 77.27	Cal. 80
				Ap1.18	Ap70	Ap. 50%	Cal. 60.10	Cal. 130.64
Ref. 11	H-cell,	SnO ₂ /carbon Aerogels		-0.55	Ap5	Ap. 37%	Ap. 12.14	Ap. 8.80
	30ml 1.0 M KHCO ₃ ,	"SnO ₂ /CA-80"		-0.65	Ap10	Ap. 72%	Ap. 25.39	Ap. 18.40
	CO_2 flow 20 ml/min.	S _{geo} : 2 cm ²		-0.75	Ap15	Ap. 71%	Ap. 25.39	Ap. 18.40
				-0.85	Ap25	Ap. 73%	Ap. 26.50	Ap. 19.20
				-0.95	Ap34	Ap. 75%	Ap. 27.05	Ap. 19.60
				-1.05	Ap44	Ap. 60%	Ap. 20.42	Ap. 14.80
				-1.15	Ap53	Ap. 44%	Ap. 15.46	Ap. 11.20

Ref. ¹²	H-cell, 65 ml 0.5 M KHCO ₃ CO ₂ flow 30 ml/min	SnPb alloy on carbon cloth S _{geo} : 1 cm ²		Ap1.38	-57.3	79.8%	Cal. 39.26	Ap. 13
Ref. 13	H-cell,	Cu-CDots nanocorals		-0.5	Ap1	Ap. 25%	Cal. 0.11	Cal. 0.03
	75 ml CO ₂ -saturated	S _{geo} : 0.49 cm ²		-0.6	Ap3.4	Ap. 50%	Cal. 0.72	Cal. 0.21
	0.5 M KHCO ₃ ,			-0.7	Ар6	Ap. 68%	Cal. 1.72	Cal. 0.50
	No CO_2 flow during eCO_2R .			-0.8	Ap9.5	Ap. 58%	Cal. 2.32	Cal. 0.67
Ref. 14	H-cell,	Pt _x Pd _(100-x) /C NPs		-0.1	Ap1.4	Ap. 20%	Cal. 0.19	Cal. 0.14
	Ap. 30 ml 0.1 M K ₂ HPO ₄	S _{geo} : 0.49 cm ²		-0.2	Ap1.6	Ap. 20%	Cal. 0.22	Cal. 0.16
	/ 0.1 KH ₂ PO ₄			-0.3	Ap1.8	Ap. 70%	Cal. 0.85	Cal. 0.62
	electrolyte (pH 6./),			-0.4	Ap2	Ap. 84%	Cal. 1.13	Cal. 0.82
	$eCO_2R.$			-0.5	Ap4	Ap. 60%	Cal. 1.62	Cal. 1.17
Ref. 15	ef. ¹⁵ 2C cell, AEM 8 ml 0.1 M KHCO ₃ , CO ₂ flow 20 ml/min.	Sn foil S _{geo} : 4.5 cm ²		-0.4	Ар	Ap. 13%		
					0.0195		Cal. 0.01	Cal. 0.03
				-0.6	Ap 0.1365	Ap. 10%	Cal. 0.05	Cal. 0.14
				-0.87	Ар3	Ap. 67%	Cal. 7.77	Cal. 21.10
				-1.0	Ap7.3	Ap. 70%	Cal. 19.74	Cal. 53.64
				-1.27	Ap. 14.3	Ap. 54%	Cal. 29.83	Cal. 81.07
S _{geo} : electrode geon	netric surface area,						Cull 25.05	Cull 01.07
Ap.: Approximate v	alue as seen directly from	the given diagrams in lite	rature,					
Cal.: Calculated valu	ue based on the given and	approximate values.						
For the calcula	tion method:							
Hypothesis the current density <i>j</i> and fomate production rate held constant within 1 hour, $FE_{formate} \times Q \times M_{r(formate)}$ $FE_{formate} \times j \times S_{geo} \times 3600 \times 46$								
formate	e yield per hour (mg/h) =	$F \times 2$	=	96500 >	× 2	_		
	formate yield per hour							
formate conc. per hour (mM/h) = $M_{r(formate)} \times Vol_{catholyte}$								

Figure S1 3D drawing of the GDE reactor set-up used in this study.

Figure S2 SEM images of Vulcan XC-72 carbon black.

Figure S3 Cyclic voltammetry (CV) measurements under N_2 (blue) and CO_2 (orange) atmosphere using $SnO_2/C(3.5)$ catalyst. Scan rate: 10 mV s⁻¹, scan circles: 3, both diagrams were taken from the 3rd cycle of scan.

Table S2 Normalized Faradaic efficiencies (FEs) of all the products and current density (j) of eCO₂Rs using different catalysts in gas diffusion electrode (GDE) cell with 1 M KOH catholyte, at wide range of cathodic potentials (V vs. RHE). Random error is shown in brackets.

	Catalyst		<i>i</i> (mA cm ⁻²)				
Cathodic			(random error)		(random		
potential	,	Ha	CO	HCOO ⁻	error)		
		46.77%	12,39%	40.84%	-7.36		
	C	(3.95%)	(6.24%)	(10.19%)	(1.97)		
	SnO ₂ /C(0.5)	4.96%	33,77%	61.27%	-13.84		
		(0.97%)	(6.57%)	(7.54%)	(6.23)		
		3.44%	31.38%	65.18%	-22.30		
-0.63 V	$SnO_2/C(1.0)$	(1.27%)	(2.71%)	(1.44%)	(3.68)		
		4.47%	17.11%	78.42%	-31.72		
	$SnO_2/C(3.5)$	(2.24%)	(7.93%)	(5.69%)	(2.10)		
	60	17.09%	12.08%	70.83%	-28.20		
	SnO ₂	(6.35%)	(10.05%)	(16.40%)	(1.94)		
	•	· · ·	· · · ·	· · ·	· · · ·		
	6	50.29%	15.82%	33.89%	-25.93		
		(3.62%)	(2.49%)	(1.13%)	(2.16)		
		5.28%	34.03%	60.69%	-36.58		
	$310_2/C(0.5)$	(1.09%)	(3.04%)	(4.13%)	(0.30)		
0.02.1/	$s_{nO}/c(1.0)$	1.76%	27.42%	70.82%	-40.80		
-0.85 V	31102/0(1.0)	(4.08%)	(7.22%)	(3.14%)	(10.08)		
	SnO ₂ /C(3.5)	4.26%	18.35%	77.39%	-68.12		
		(0.87%)	(8.10%)	(7.23%)	(0.28)		
	SnO ₂	15.54%	14.29%	70.17%	-44.56		
		(2.10%)	(10.32%)	(12.42%)	(8.18)		
	C	48.58%	18.99%	32.43%	-59.83		
		(1.13%)	(3.00%)	(4.13%)	(9.20)		
	$SnO_{2}/C(0.5)$	3.83%	20.28%	75.89%	-72.35		
		(1.06%)	(3.99%)	(2.93%)	(2.62)		
-1.03 V	$SnO_{2}/C(1.0)$	1.72%	22.25%	76.03%	-126.95		
		(2.67%)	(4.52%)	(1.85%)	(6.64)		
	$SnO_{2}/C(3.5)$	3.83%	18.44%	77.72%	-123.74		
	2/ - (/	(1.17%)	(1.92%)	(0.74%)	(4.08)		
	SnO ₂	21.40%	10.34%	68.26%	-106.63		
		(2.91%)	(5.59%)	(2.68%)	(15.76)		
	1						
	с	48.56%	25.19%	26.25%	-85.60		
		(6.71%)	(6.24%)	(0.47%)	(3.11)		
	$SnO_{2}/C(0.5)$	1.00%	25.18%	73.82%	-125.48		
	2.1.02/ 0(0.07	(1.29%)	(2.72%)	(1.43%)	(24.15)		
-1.23 V	SnO ₂ /C(1.0)	1.60%	17.51%	80.89%	-195.00		
		(2.44%)	(2.11%)	(4.55%)	(5.73)		
	SnO ₂ /C(3.5)	2.95%	16.71%	80.34%	-209.05		
		(1.02%)	(1.13%)	(2.15%)	(13.11)		
	SnO ₂	23.81%	13.42%	62.77%	-174.05		
	51102	(0.82%)	(1.13%)	(1.95%)	(18.41)		
	1		40.070	22.5-24	440.01		
-1.43 V	с	57.66%	19.87%	22.47%	-119.04		
1. T.		(1.51%)	(0.55%)	(2.06%)	(6.85)		

	SnO ₂ /C(0.5)	2.44%	14.29%	83.27%	-156.78
		(0.59%)	(6.29%)	(6.88%)	(23.64)
	SnO ₂ /C(1.0)	2.47%	16.18%	81.35%	-247.00
		(1.41%)	(2.68%)	(4.09%)	(8.94)
	SnO ₂ /C(3.5)	4.16%	11.51%	84.33%	-251.00
		(0.04%)	(4.22%)	(4.18%)	(8.43)
	SnO ₂	37.55%	7.21%	55.24%	-235.11
		(0.78%)	(1.18%)	(1.96%)	(5.62)

Figure S4 Partial current densities to produce H_2 , CO, and format from eCO₂R as a function of the applied potential for different catalysts: a) C, b) $SnO_2/C(0.5)$, c) $SnO_2/C(1.5)$, d) $SnO_2/C(3.5)$, e) SnO_2 .

Figure S5 Schematic of pore conditions in the catalyst layer. (a) Flooded pore: pore volume filled with electrolyte. (b) Wetted pore: a thin layer of electrolyte covers the pore walls. (c) Dry pore: catalyst inactive due to lack of an ionic pathway. Reproduced from Ref. ¹⁶ with permission from the PCCP Owner Societies.

Figure S6 Determination of double-layer capacitance for a smooth stainless-steel sheet and the SnO_2/C -GDEs with various SnO_2/C mass ratio. a) CVs taken in the same electrochemical cell with a cation exchange membrane and 0.1 M HClO₄ electrolyte as reported before^[17], over a range of scan rates in a potential window where only double-

layer charging and discharging is relevant for stainless-steel and SnO_2/C -GDEs. b) Current due to double-layer charge/discharge plotted against CV scan rate for stainlesssteel and SnO_2/C -GDEs.

Figure S7 Energy efficiencies of all the products from eCO_2R and the time consumed for producing 0.5 M formate at at specific applied potentials $-0.63 \sim -1.43$ V with static catholyte.

Table S3 Calculations on half-cell reduction potentials (in reduction form) involved informate fuel cell when formate concentration is 0.5 M at pH=14, 60 °C. Gibbs–Helmholtz equation, Nernst equation were used based on the database from OutokumpuHSC Chemistry 6.0 software.

Redox reactions		ΔH _r ⊖	ΔS _r ⊖(J	∆G _r ⊖	E ⁰ (V vs	E (V vs		
		(KJ)	K-1)	(KJ)	SHE)	SHE)		
Anode half-cell:								
$CO_2 + 2H_2O + 2e^- \rightarrow HCOOH$	79.689	-343.01	181.96	-0.944	-0.954			
Cathode half-cell								
$\frac{1}{2}O_2 + H_2O + 2e^- \to 2OH^-$	-174.22	-324.63	-77.43	+0.402	+0.402			
Full-cell								
$HCOOH + \frac{1}{2}O_2 \rightarrow CO_2 + H_2O$		-253.91	18.39	-259.39		1.356		
	ΔH_r^{\ominus} :	change in enthalpy at standard state						
$\Delta G_r^{\ominus} = \Delta H_r^{\ominus} - T \Delta S_r^{\ominus}$	ΔS _r ⊖: α ΔG _r ⊖:	ΔS_r^{\ominus} : change in entropy at standard state ΔG_r^{\ominus} : change in the Gibbs free energy at standard state						
∧ _G ↔	E ^o : standard half-cell reduction potential							
$E^{0} = -\frac{-z_{T}}{z_{F}}$	<i>E:</i> half-cell reduction potential							
	reaction							
$E = E^0 + \frac{RT}{\ln \frac{a_{Ox}}{2}}$	aradaic constant, 96485 C mol¹.							
$z = z$ $z F^{m} a_{Red}$ R: gas a		: gas constant, 8.413						
	T: tem	emperature, here is 298.15 K						
	<i>Red</i> : chemical activity of the oxidized/reduced form, for							
	soliu 0 relater	Sind of pure phase, $a=1$; for forth in solution, a can be						

References

- 1 Wang, Q., Dong, H. & Yu, H. Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte. *Journal of Power Sources* **271**, 278-284 (2014).
- 2 Wu, J., Risalvato, F. G., Ma, S. & Zhou, X.-D. Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell. *J. Mater. Chem. A* **2**, 1647-1651 (2014).
- 3 Lu, X., Leung, D. Y., Wang, H. & Xuan, J. A high performance dual electrolyte microfluidic reactor for the utilization of CO2. *Applied energy* **194**, 549-559 (2017).
- 4 Irtem, E. *et al.* Low-energy formate production from CO 2 electroreduction using electrodeposited tin on GDE. *J. Mater. Chem. A* **4**, 13582-13588 (2016).
- 5 Bitar, Z., Fecant, A., Trela-Baudot, E., Chardon-Noblat, S. & Pasquier, D. Electrocatalytic reduction of carbon dioxide on indium coated gas diffusion electrodes—Comparison with indium foil. *Applied Catalysis B: Environmental* **189**, 172-180 (2016).
- 6 Chung, J., Koh, J., Kim, E.-H. & Woo, S. I. Hierarchical Cu pillar electrodes for electrochemical CO 2 reduction to formic acid with low overpotential. *Phys. Chem. Chem. Phys.* **18**, 6252-6258 (2016).
- Li, Y. *et al.* Rational design and synthesis of SnOx electrocatalysts with coralline structure for highly improved aqueous CO2 reduction to formate. *ChemElectroChem* 3, 1618-1628 (2016).
- 8 Lei, T. *et al.* Continuous electroreduction of carbon dioxide to formate on Tin nanoelectrode using alkaline membrane cell configuration in aqueous medium. *Catalysis Today* **318**, 32-38 (2018).
- 9 Zhang, Q. *et al.* Electrochemical Reduction of CO2 by SnOx Nanosheets Anchored on Multiwalled Carbon Nanotubes with Tunable Functional Groups. *ChemSusChem* **12**, 1443-1450 (2019).
- 10 Li, F., Chen, L., Knowles, G. P., MacFarlane, D. R. & Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. *Angew. Chem., Int. Ed.* **56**, 505-509 (2017).
- 11 Yu, J., Liu, H., Song, S., Wang, Y. & Tsiakaras, P. Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity. *Appl. Catal., A* **545**, 159-166 (2017).
- 12 Choi, S. Y., Jeong, S. K., Kim, H. J., Baek, I.-H. & Park, K. T. Electrochemical reduction of carbon dioxide to formate on tin–lead alloys. *ACS Sustainable Chemistry & Engineering* **4**, 1311-1318 (2016).
- 13 Guo, S. *et al.* Cu-CDots nanocorals as electrocatalyst for highly efficient CO 2 reduction to formate. *Nanoscale* **9**, 298-304 (2017).
- 14 Kortlever, R., Peters, I., Koper, S. & Koper, M. T. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbonsupported bimetallic Pd–Pt nanoparticles. *ACS Catal.* **5**, 3916-3923 (2015).
- Feaster, J. T. *et al.* Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. *ACS Catal.* 7, 4822-4827 (2017).
- 16 Weng, L.-C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO 2 reduction. *Phys. Chem. Chem. Phys.* **20**, 16973-16984 (2018).
- 17 Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. *J. Am. Chem. Soc.* **134**, 7231-7234 (2012).