## **Supporting Information**

## **Experimental Sections**

Synthesis of MXene nanosheets: Firstly, 1 g of lithium fluoride powder was dissolved in 10 mL of concentrated hydrochloric acid (~12 M) under magnetic stirring. Then 1 g of Ti<sub>3</sub>AlC<sub>2</sub> powder was added to the above solution gently and the resulting mixture was placed in the pre-prepared thermostatic water bath of 35 °C for 24 h under magnetic stirring. The consequent mixture was rinsed with deionized water and centrifuged at 3500 rpm repeatedly until the pH of the supernatant was close to neutrality. With gentle sonication, the supernatant containing MXene nanosheets was collected after centrifugation. MXene powder could be obtained through lyophilization.<sup>1</sup>

**Synthesis of MoS<sub>2</sub> nanotubes:** MoS<sub>2</sub> nanotubes were prepared via a hydrothermal method in the light of previous reports.<sup>2</sup> Generally, 76.8 mg of sulphur powder and 185.8 mg of ammonium molybdate were dissolved in the mixed solution of octylamine (28 mL) and absolute ethanol (24 mL) under magnetic stirring for 1 h. Subsequently, the mixture was transferred to a 100 mL Teflon-lined autoclave, sealed, and kept at the thermostatic oven of 200 °C for 24 h. After natural cooling, the consequent mixture was washed with absolute ethanol and deionized water several times. The final product was collected through lyophilization.

**Synthesis of MnO<sub>2</sub> nanowires:** MnO<sub>2</sub> nanowires were prepared via the hydrothermal reaction according to the previous report.<sup>3</sup> Basically, 0.45 g of potassium permanganate powder, 1 mL of concentrated hydrochloric acid (~12 M) and 40 mL deionized water were blended under magnetic stirring for 30 min. Then the above aqueous dispersion was transferred to a 100 mL Teflon-lined autoclave, sealed and kept at 160 °C for 12 h. The resulting mixture was filtered, washed with deionized water and dried at 60 °C overnight.

**Preparation of MXene/MoS<sub>2</sub> composite films:** Generally, the dilute aqueous dispersions (~0.5 mg mL<sup>-1</sup>) of MXene nanosheets and MoS<sub>2</sub> nanotubes were prepared separately under gentle sonication. Subsequently, the above dispersions were added dropwise on the filter membrane alternatively according to different mass ratios (MXene: MoS<sub>2</sub>=1:2, 1:3 and 1:4, denoted as MXene/MoS<sub>2</sub>-1:2, MXene/MoS<sub>2</sub>-1:3 and MXene/MoS<sub>2</sub>-1:4). After vacuum filtration, the membranes were stored under vacuum overnight. The flexible MXene-bonded MoS<sub>2</sub> films were readily peeled off the filter membranes and could serve as LIB anodes directly with no other binder, conductive agent or current collector. For comparison, the neat MXene and MXene-bonded MnO<sub>2</sub> films were fabricated via the similar procedures. Specifically, the mass of all above-prepared films are set as 15 mg, give or take.

*Electrochemical measurements:* The as-prepared films were tailored to round electrode with a diameter of 12 mm. To evaluate the electrochemical performance, 2025 coin-type half cells were assembled in the argon-filled glove box using lithium

foils as the counter electrodes and 1 M LiPF<sub>6</sub> dissolved in ethylene carbonate/diethyl carbonate (volume ratio=1:1) as electrolyte. In comparison, either neat MoS<sub>2</sub> or MnO<sub>2</sub> powder was made into working electrode slurry containing MoS<sub>2</sub> or MnO<sub>2</sub>, acetylene black and poly(vinylidene fluoride) dissolved in N-methyl-2-pyrrolidone with a mass ratio of 8:1:1 at room temperature. The consequent slurry was coated on copper foils and held in vacuum at 120 °C overnight to acquire the slice electrodes. All the galvanostatic charge/discharge (GCD) profiles were measured between 0.01–3 V (vs. Li/Li<sup>+</sup>) via Neware battery test system. Cyclic voltammetry (CV) tests were carried out at a scan rate of 0.1 mV s<sup>-1</sup> with the CHI 660d electrochemical workstation. The electrochemical impedance spectroscopy (EIS) tests were conducted within the frequency range of 100000-0.1 Hz utilizing a Parstat 2273 Advanced Electrochemical Systems appratus.

**Characterizations:** The powder X-ray diffraction (XRD) measurements were recorded through a PANalytical X'pert PRO X-ray diffractometer with Cu K $\alpha$  radiation ( $\lambda$ =0.154 nm). Brunauer-Emmett-Teller (BET) tests were measured on the ASAP 2020 adsorption analyser at 77K. The scanning electron microscope (SEM) images were obtained by utilizing a Hitachi SU8000 microscope. Transparent electron microscopy (TEM) and high-resolution transparent electron microscopy (HRTEM) were conducted with a JEOL JEM-2100 microscope. Raman spectra were carried out using a Renishaw confocal Raman spectrometer ( $\lambda$ =633 nm). X-ray photoelectron spectroscopy (XPS) was evaluated by a Thermo Scientific K-Alpha spectrometer.

## Supplementary Figures and Tables



Fig. S1 Schematic illustration of the fabrication procedures of  $MXene/MoS_2$  composite films.



Fig. S2 (a) TEM and (b) HRTEM images of MXene.



Fig. S3 (a) SEM and (b) corresponding detailed morphology, (c) TEM and (d) HRTEM images of MoS<sub>2</sub> nanotubes.



Fig. S4 (a) Macroscopic image of MXene/MoS<sub>2</sub>-1:3 film, which exhibits superior flexibility (b).



Fig. S5 Top-view SEM image of MXene/MoS<sub>2</sub>-1:3 film.



Fig. S6 SEM image of (a)  $MXene/MoS_2$ -1:3 and corresponding element mapping validating the uniform distribution of (b) Ti, (c) S and (d) Mo.



Fig. S7 XRD patterns of (a) MoS<sub>2</sub> naotubes, MXene naosheets, composite films at different mass ratios and (b) MAX precursor and corresponding PDF card.

| Table 51 Basic physical parameters of Mixene, Mos <sub>2</sub> and composite mins. |              |               |                     |                                       |  |  |
|------------------------------------------------------------------------------------|--------------|---------------|---------------------|---------------------------------------|--|--|
| Samples                                                                            | (002)/degree | d-spacing/(Å) | film thickness/(µm) | SSA/(m <sup>2</sup> g <sup>-1</sup> ) |  |  |
| neat MXene film                                                                    | 6.9          | 12.8          | 4.1                 | 25.5                                  |  |  |
| MXene/MoS <sub>2</sub> -                                                           | 6.1          | 14.4          | 6.1                 | 39.1                                  |  |  |
| 1:2                                                                                |              |               |                     |                                       |  |  |
| MXene/MoS <sub>2</sub> -                                                           | 5.9          | 14.9          | 8.6                 | 41.2                                  |  |  |
| 1:3                                                                                |              |               |                     |                                       |  |  |
| MXene/MoS <sub>2</sub> -                                                           | 5.8          | 15.2          | 10.7                | 44.1                                  |  |  |
| 1:4                                                                                |              |               |                     |                                       |  |  |
| MoS <sub>2</sub>                                                                   | -            | -             | -                   | 57.5                                  |  |  |

Table S1 Basic physical parameters of MXene, MoS<sub>2</sub> and composite films.



Fig. S8 Nitrogen adsorption-desorption isotherms of (a) MXene film, (c) MoS<sub>2</sub> powder and (e) MXene/MoS<sub>2</sub>-1:3 composite film and corresponding pore size distribution (b), (d) and (f).



Fig. S9 S 2p spectrum of MXene/MoS<sub>2</sub>-1:3 film.



Fig. S10 Charge-discharge curves of MXene/MoS $_2$ -1:3 film at 500 mA g $^{\text{-}1}$ .



Fig. S11 (a) Cycle performance, (b) rate capabilities,(c) Nyquist plots of MXene/MoS<sub>2</sub> hybrids at different mass ratios and (d) corresponding equivalent circuit of MXene/MoS<sub>2</sub>-1:3.

| Table S2 The cycle and rate performances of our MXene/MoS <sub>2</sub> hybrid films and previously reported |
|-------------------------------------------------------------------------------------------------------------|
| other MoS <sub>2</sub> -based and MXene -based anodes.                                                      |

| Samples                              | Specific capacity (mAh g <sup>-1</sup> )        | High rate capacity     | Reference |
|--------------------------------------|-------------------------------------------------|------------------------|-----------|
|                                      | (cycling numbers) (current density)             | (mAh g <sup>-1</sup> ) |           |
| MXene/MoS <sub>2</sub> -1:3          | 731.0 (100) (0.75C, 1C=670 mA g <sup>-1</sup> ) | 605.4 (2.98 C)         | This work |
| MXene/MoS <sub>2</sub> -1:3          | 735.8 (500) (2.98 C)                            | -                      | This work |
| MoS <sub>2</sub> /CFs                | 630 (400) (2,39 C)                              | 465.5 (9.55 C)         | 4         |
| MoS <sub>x</sub> /MWNTs              | 1000 (45) (0.07 C)                              | 197 (2.98 C)           | 5         |
| single-layered MoS <sub>2</sub> -    | 600 (1000) (14.92 C)                            | 373 (74.63 C)          | 6         |
| carbon nanofiber                     |                                                 |                        |           |
| MoS <sub>2</sub> /graphene           | 877 (50) (0.15 C)                               | 466 (5.97 C)           | 7         |
| MoS <sub>2</sub> /PEO/graphene       | 950 (185) (0.07 C)                              | 210 (14.92C)           | 8         |
| MoS <sub>2</sub> /polyaniline        | 748 (50) (0.15 C)                               | 320 (1.49C)            | 9         |
| nanowires                            |                                                 |                        |           |
| Ti <sub>3</sub> C <sub>2</sub> paper | 410 (100) (0.48 C)                              | -                      | 10        |
| Ti <sub>3</sub> C <sub>2</sub> /CNTs | 428 (300) (0.24 C)                              | 218.2 (0.96 C)         | 11        |
| $PVP-Sn(IV)@Ti_3C_2$                 | 544 (200) (0.84 C)                              | 233 (4.48C)            | 12        |



Fig. S12 (a) XPS, (b) Raman and (c) XRD analysis of MXene/MnO<sub>2</sub> film.



Fig. S13 (a) SEM image and (b) detailed morphology of  $MnO_2$  nanowires.



Fig. S14 (a) TEM and (b) HRTEM images of  $MnO_2$  nanowires with inset of SAED; corresponding element mapping validates the uniform distribution of Mn (c) and O (d).

## Supporting References

- (a) M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi and M. W. Barsoum, *Nature*, 2014, **516**, 78; (b) C. Wang, X. D. Zhu, Y. C. Mao, F. Wang, X. T. Gao, S. Y. Qiu, S. R. Le and K. N. Sun, *Chem. Commun.*, 2019, **55**, 1237.
- 2 (a) P. P. Wang, H. Y. Sun, Y. J. Ji, W. H. Li and X. Wang, *Adv. Mater.*, 2014, 26, 964; (b) X. D. Zhu, K. X. Wang, D. J. Yan, S. R. Le, R. J. Ma, K. N. Sun and Y. T. Liu, *Chem. Commun.*, 2015, 51, 11888.
- 3 C. Tanggarnjanavalukul, N. Phattharasupakun, K. Kongpatpanich and M. Sawangphruk, *Nanoscale*, 2017, **9**, 13630.
- 4 D. Y. Ren, Y. J. Hu, H. B. Jiang, Z. N. Deng, S. Petr, H. Jiang and C. Z. Li, *ACS Sustainable Chem. Eng.*, 2016, **4**, 1148.
- 5 Y. M. Shi, Y. Wang, J. I. Wong, A. Y. S. Tan, C. L. Hsu, L. J. Li, Y. C. Lu and H. Y. Yang, *Sci. Rep.*, 2013, **3**, 2169.
- 6 C. B. Zhu, X. K. Mu, P. A. van Aken, Y. Yu and J. Maier, *Angew. Chem., Int. Ed.*, 2014, **53**, 2152.
- 7 X. H. Cao, Y. M. Shi, W. H. Shi, X. H. Rui, Q. Y. Yan, J. Kong and H. Zhang, *Small*, 2013, **9**, 3433.
- 8 J. Xiao, X. J. Wang, X. Q. Yang, S. D. Xun, G. Liu, P. K. Koech, J. Liu and J. P. Lemmon, *Adv. Funct. Mater.*, 2011, **21**, 2840.
- 9 L. C. Yang, S. N. Wang, J. J. Mao, J. W. Deng, Q. S. Gao, Y. Tang and O. G. Schmidt, Adv. Mater., 2013, 25, 1180.
- 100. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall'Agnese, M. Heon, M. W. Barsoum and Y. Gogotsi, *Nat. Commun.*, 2013, **4**, 1716.
- 11 Y. Liu, W. Wang, Y. Ying, Y. Wang and X. Peng, *Dalton Trans.*, 2015, 44, 7123.
- 12J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang, L. Zhang, Y. Gan, C. Liang and W. Zhang, *ACS Nano*, 2016, **10**, 2491.