Supporting information

MnO/C Cubo-polyhedrons Derived from α-MnO₂@ZIF-8 as

Anode Materials for high-performance lithium-ion batteries

Ye Lin^{1,2}, Lei Zhang^{3*}, Jiaoyu Xiao⁴, Hongdong Liu^{1,5*}

1 College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China

2 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China

3 College of Life Science, Chongqing Normal University, Chongqing 401331, PR China

4 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, PR China

5 Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Chongqing 400715, PR China

*Corresponding author: leizhang0215@126.com (Lei Zhang) Ihd0415@126.com (Hongdong Liu)

Figure S1. XRD pattern of (a) α -MnO₂ and (b) α -MnO₂@ZIF-8 precursors.

Figure S2. TGA curve of MnO/C-900 cubo-polyhedrons.

Figure S2 presents the TGA curve of MnO/C-900 cubo-polyhedrons. A major weight increase in the range from 250 to 600 °C, which can be attributed to the oxidation of C into CO/CO₂ and MnO into $Mn_2O_3^{1, 2}$. Let the amount of substance of MnO in the MnO/C cubo-polyhedrons to be X mol, so the generated Mn_2O_3 to be X/2 mol. If the carbon is completely converted into CO₂ after oxidation, one has the relation, 157.8*X/2 = 107.6%. Therefore x = 1.36 mol, the weight percentage of MnO and C in the MnO/C cubo-polyhedrons were estimated to be about 96.48% and 3.52%, respectively.

Figure S3. SEM images of α -MnO₂.

Figure S4. FESEM images of α -MnO₂@ZIF-8 precursors.

Figure S5. SEM images of (a,d) ZnO@MnO-600, (b,e) ZnO@MnO-700 and (c,f) ZnO@MnO-800 composites.

Figure S6. SEM images of (a-b) MnO/C-900 and (c-d) MnO/C-1000 cubo-polyhedrons.

Figure S7. SEM images of pure MnO particles.

Figure S8. FESEM images of ZnO@MnO-700 composites.

Figure S9. Discharge/charge profiles at a current density of 100 mA g⁻¹ for 1st, 3rd, 50th, 100th, and 200th cycles of MnO/C-900 cubo-polyhedrons.

Samples	Initial capacity (mAh g ⁻¹)	Restored capacity (mAh g ⁻¹)	Cycle number	Current (mA g ⁻¹)	Ref.
C/MnO/SiOC	1173	770	200	100	3
MnO/Ni/CNF	737	534.5	100	200	4
MnO@Al ₂ O ₃	1390	855	100	100	5
MnO2@C@MnO	1171.3	919.2	100	200	6
Porous MnO/C-N	1045.8	756.5	400	300	7
GNS@MnO@N-C	1024	754.3	350	100	8
MnO@C hybrid	909	900	400	300	9
Porous MnO@C core-shell nanowires	1115.8	448.1	100	200	10
MnO/C cubo- polyhedrons	1217.5 897	916 1334	200 500	100 200	This work

Table S1. The comparison of the capacity of present work with reported MnO material.

References

1.S. Qiu, X. Wang, G. Lu, J. Liu and C. He, Mater. Letters, 2014, 136, 289-291.

2.Y. Qin, Z. Jiang, H. Rong, L. Guo and Z.-J. Jiang, *Electrochimica Acta*, 2018, 282, 719-727.

3.H. Huang, C. Shi, R. Fang, Y. Xia, C. Liang, Y. Gan, J. Zhang, X. Tao and W. Zhang, *Chemical Engineering Journal*, 2019, **359**, 584-593.

4.X. Kong, A. Pan, Y. Wang, D. Selvakumaran, J. Lin, X. Cao, S. Liang and G. Cao, *J. Mater. Chem. A*,

2018, 6, 12316-12322.

5.I. Ullah, Y. Xu, X. Sun, W. ur rehman, Y. Zhang and L. Li, *Applied Surface Science*, 2018, **457**, 831-837.

6.L. Zheng, Y. Liu, J. Lan, Y. Yu and X. Yang, Chemical Engineering Journal, 2017, 330, 1289-1296.

7.L.-F. Chen, S.-X. Ma, S. Lu, Y. Feng, J. Zhang, S. Xin and S.-H. Yu, Nano Research, 2016, 10, 1-11.

8.Y. Wang, X. Ding, F. Wang, J. Li, S. Song and H. Zhang, Chemical science, 2016, 7, 4284-4290.

9.S. Wang, Y. Xing, C. Xiao, H. Xu and S. Zhang, J. Power Sources, 2016, 307, 11-16.

10.S. Chen, Y. Chen, R. Zhou, J. Wu, Y. Song, P. Li, Y. Song and L. Wang, *J. Nanomater.*, 2016, **2016**, 1-6.