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Fig. S1 XRD patterns of g-C3;N4, NC-g-C3N4 and DC-g-C3N,4 (a). XRD patterns of
DC-g-C5Ny, Znln,S,, and DC-g-C3N4/Znln,S, heterojunctions with different DC-g-

C;N4 loading content.



Fig. S2 TEM images of g-C;Nj,.
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Fig. S3 N, adsorption-desorption isotherms (a) and the corresponding pore size

distribution curves (b) of g-C5N4 and DC- g-C5Ny.
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Fig. S4 FT-IR spectra of g-C;N, and DC-g-C;Ny.
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Fig. S§ XPS spectra: the survey spectrum of ZIS3 (a), Zn 2p orbital, (b) In 3d orbital
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Fig. S6 Band gap energy of ZnIn,S,, DC-g-C3Nj,.



Table S1 Comparison of AQE of ZIS3 with those of other catalysts reported in

literature.

Entry Catalysts AQE (%) Wavelength (nm) ref
1 ZIS3 18.2 420 this work
2 CNB NS 7.45 420 [1]
3 MoS,/CQDs/ZnIn,S, 25.6 420 [2]
4 Pt/Ni(OH),-C5N,4 11.2 420 (3]
5 v-TiO,@ZIF-8 50.89 380 (4]

quasi-honeycomb g-
6 6.27 400 [5]
C3Ny

7 g-C3N4-M, U, 74.0 400 (6]
8 Pt/CNS 24 420 [7]
9 O substituted g-C3Ny 13.2 420 [8]
10 MoS,/ZnIn,S, 3.08 420 (9]
11  NiS/V-s-Znln,S4/WO; 72.0 420 [10]
12 Znln,S,/MoSe, 21.39 420 [11]
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Fig. S7 Transient photocurrent—time (I-t) curves (a), electrochemical impedance
spectroscopy (EIS) Nyquist plots of different samples in 0.2 M Na,SO, solution
(b), photoluminescence spectra (c) and linear sweep voltammetry (LSV) curves (d)

of pristine g-C5Ny4, NC-g-C3N,4 and DC-g-C3Ny.
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Fig. S8 Band gap energy of pristine g-C;Nj.
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Fig. S9 Mott-Schottky plots of pristine g-C;Ny.
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Fig. S10 Electronic structure of pristine g-C;N4 and DC-g-C;N,.
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Fig. S11 XRD patterns of the as-prepared samples (a). Plausible charge transfer
process between pristine g-C3N,4 and Znln,S, (b). *OH (c¢) and O, (d) radical active
species text by EPR over g-C3Ny, Znln,S, and g-C3N4/Znln,S, photocatalysts using

DMPO as radical adducts.

Pristine g-C5Ny4 and g-C3N,4/Znln,S, photocatalysts were also prepared in this work
for comparison and the corresponding XRD patterns were given in Fig. S11a. On the
basis of Mott-Schottky data, the conduction band and valence band edge potentials
were determined to be -1.33 V and 1.46 V versus NHE, respectively. And the band
edge alignment of pristine g-C;N, and ZnIn,S, were illustrated in Fig. 11b. Clearly, a
straddling gap feature exists between g-C;N4 and Znln,S,. Hence, the photogenerated
electrons and holes are likely to transfer to ZnIn,S,; from g-C;N,, forming a type-I
structure. Furthermore, EPR analyses can give further evidence of the above
supposition. As shown in Fig. 11c, it is seen that no obvious DMPO-+OH EPR signal
was observed for all as-prepared samples. On the other hand, the EPR data of *O,~
(Fig. S11d) active species demonstrated that the reduction ability of photogenerated

electrons for g-C3N,4/Znln,S, heterojunction had no obvious changed in comparison to



pristine g-C;N, and Znln,S,, suggesting the formation of type-I structure between

ZnIn,S, and g-C;N, without defects.
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Fig. S12 EPR spectra of DC-g-C;Ny4, ZnIn,S4 and ZIS3 using DMPO as radical

adducts for trapping *O, species under visible light irradiation. The enlarge EPR

signal represents DC-g-C;Ny.
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Fig. S13 Photocatalytic methyl orange (MO) degradation activity of DC-g-C3Ny,
Znln,S, and ZIS3 (a). Effects of different scavengers on methyl orange degradation in

the presence of ZIS3 under visible light irradiation (b).

Photocatalytic methyl orange degradation was selected as the model reaction
aiming to investigate the photooxidation ability of the obtained samples. Fig. S13a
declared that ZIS3 exhibited the higher degradation efficiency than their counterparts.
And different scavengers were added in order to determine the primary radical species
during the photocatalytic process, as displayed in Fig. S13b. Clearly, the
photocatalytic performance of ZIS3 was apparently inhibited with the addition of
ammonium oxalate (AO), tert-butyl alcohol (TBA) and benzoquinone (BQ) as hole
(h™), hydroxyl radical (*OH) and superoxide radicals (*O;’) scavenger, respectively.
Meanwhile, the photocatalytic degradation efficiency was greatly enhanced with the
addition of AgNO; because of the improvement of the separation efficiency of
photogenerated carriers after Ag reduction. According to previous reports, hydroxyl
radical (*OH) and superoxide radicals (*O;") exhibited strong oxidation ability which
play important roles in photocatalytic reaction. Hence, the photo-degradation MO was

dominated by the photogenerated holes and the subsequent generated *O,™ and *OH.
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