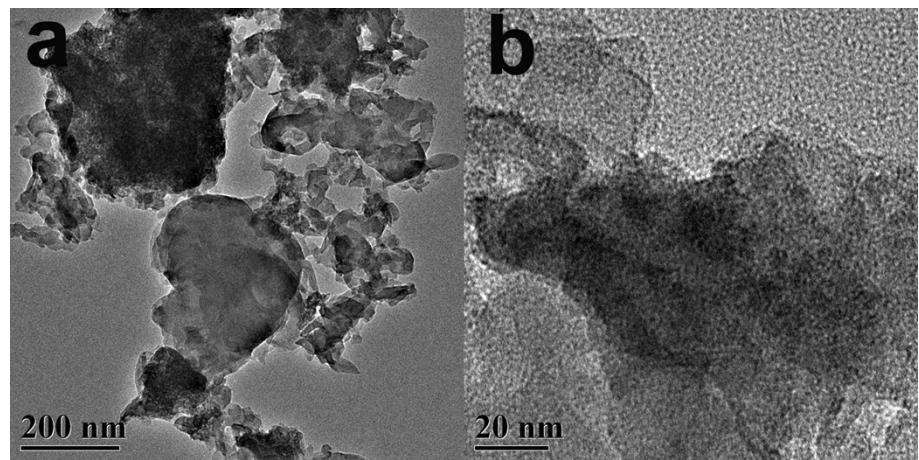
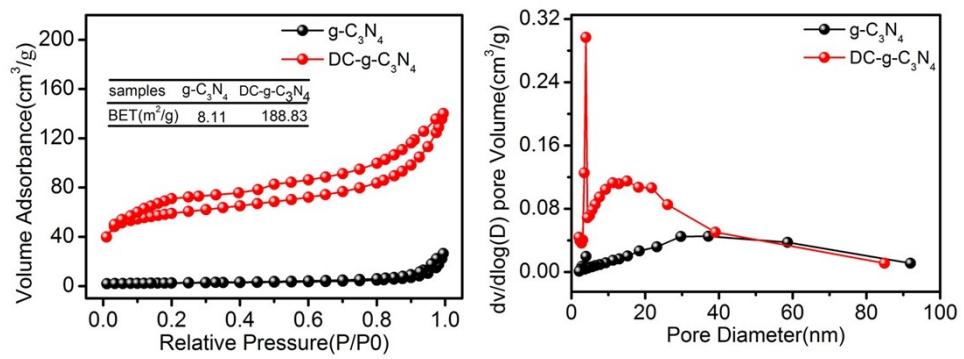
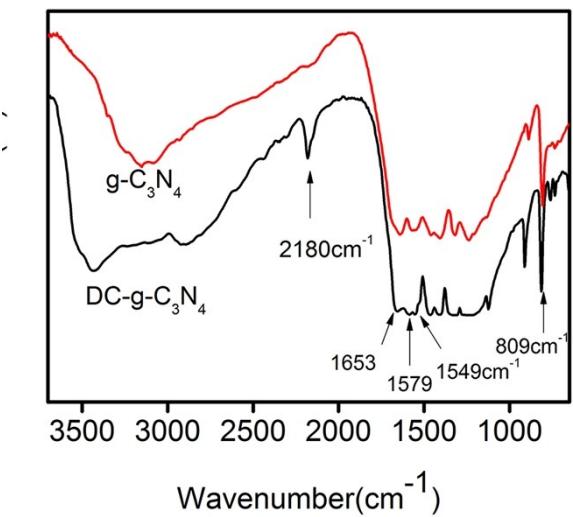

Support information for
Switching Charge Kinetic from type-I to Z-Scheme of g-C₃N₄ and
ZnIn₂S₄ by Defective Engineering for Efficient and Durable Hydrogen
Evolution

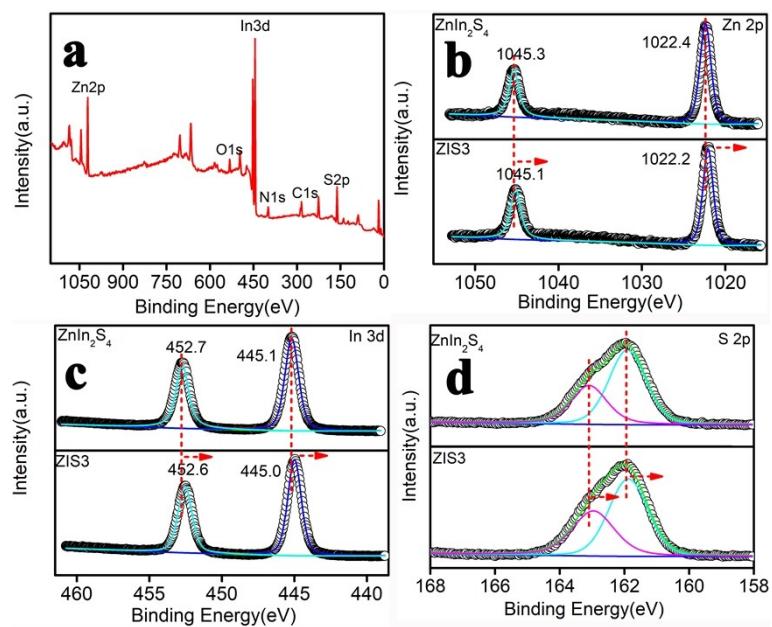
Mingya Wang[†], Shushu Huang[†], Xin Pang, Meiting Song, Chunfang Du^{*} and Yiguo Su^{*}


*Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials,
School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot,
Inner Mongolia 010021, PR China*

[†]Mingya Wang and Shushu Huang contributed equally to this work.


Corresponding author. Tel: +86-471-4344579. E-mail address: cesyg@imu.edu.cn (Y. Su). cedchf@imu.edu.cn (C. Du)


Fig. S1 XRD patterns of g-C₃N₄, NC-g-C₃N₄ and DC-g-C₃N₄ (a). XRD patterns of DC-g-C₃N₄, ZnIn₂S₄, and DC-g-C₃N₄/ZnIn₂S₄ heterojunctions with different DC-g-C₃N₄ loading content.


Fig. S2 TEM images of g-C₃N₄.

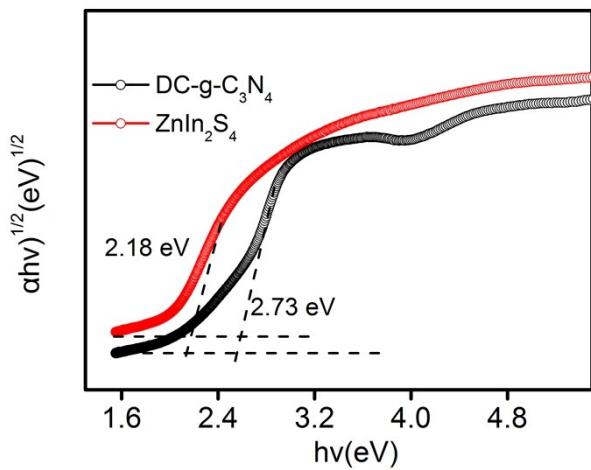

Fig. S3 N_2 adsorption-desorption isotherms (a) and the corresponding pore size distribution curves (b) of $g\text{-C}_3\text{N}_4$ and DC- $g\text{-C}_3\text{N}_4$.

Fig. S4 FT-IR spectra of $\text{g-C}_3\text{N}_4$ and DC- $\text{g-C}_3\text{N}_4$.

Fig. S5 XPS spectra: the survey spectrum of ZIS3 (a), Zn 2p orbital, (b) In 3d orbital (c) and S 2p orbital (d), respectively.

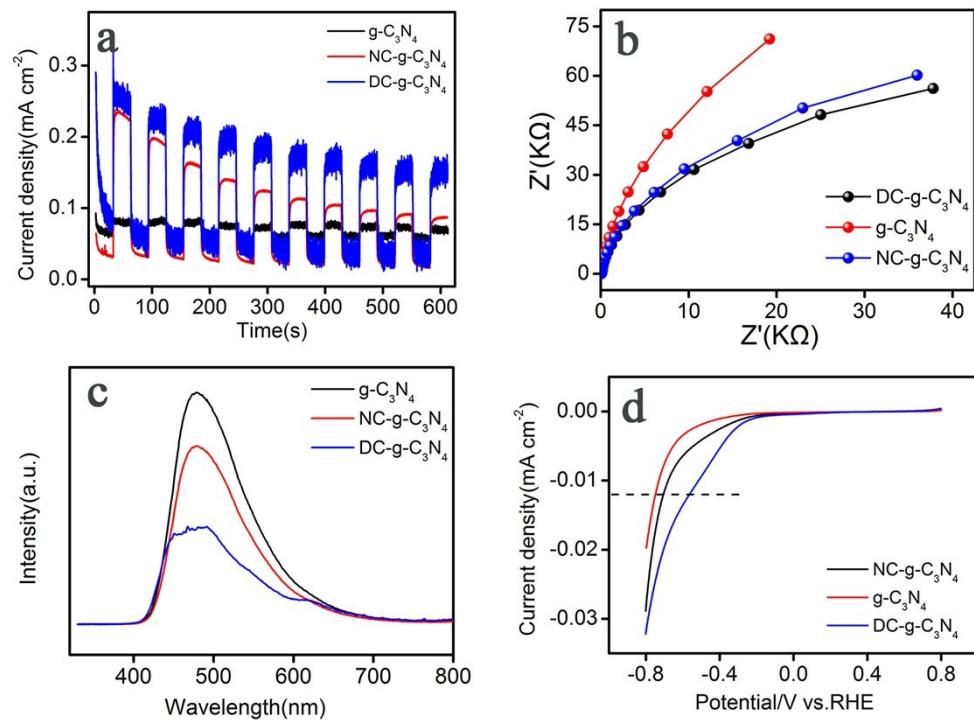
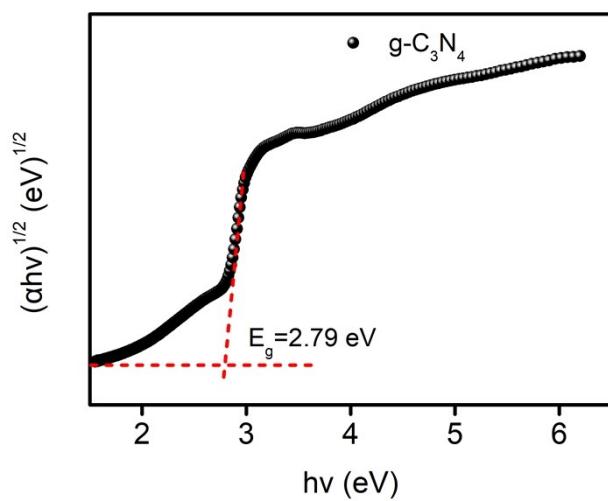
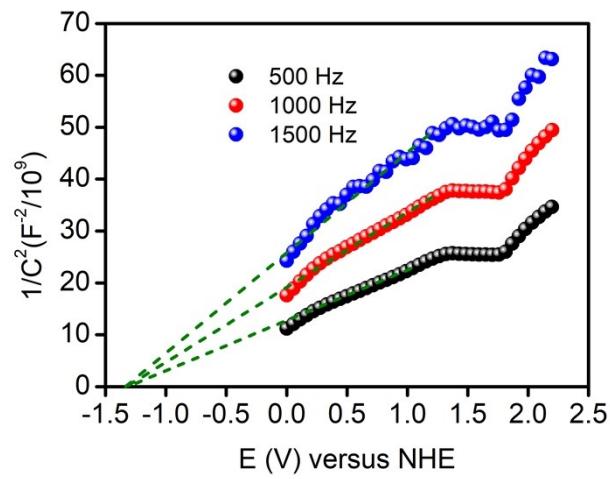
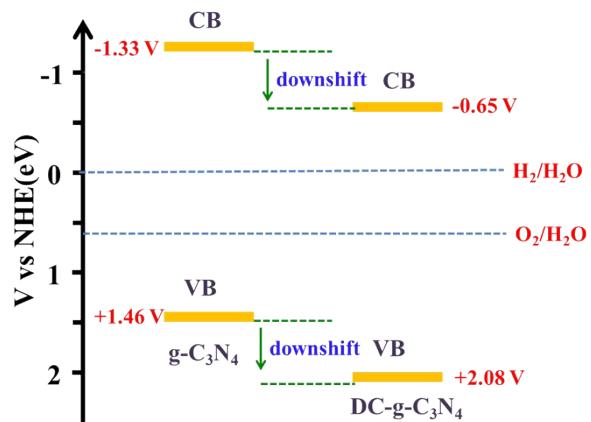


Fig. S6 Band gap energy of ZnIn_2S_4 , $\text{DC-g-C}_3\text{N}_4$.


Table S1 Comparison of AQE of ZIS3 with those of other catalysts reported in literature.

Entry	Catalysts	AQE (%)	Wavelength (nm)	ref
1	ZIS3	18.2	420	this work
2	CNB NS	7.45	420	[1]
3	MoS ₂ /CQDs/ZnIn ₂ S ₄	25.6	420	[2]
4	Pt/Ni(OH) ₂ -C ₃ N ₄	11.2	420	[3]
5	γ -TiO ₂ @ZIF-8	50.89	380	[4]
6	quasi-honeycomb g-C ₃ N ₄	6.27	400	[5]
7	g-C ₃ N ₄ -M ₁ U ₂	74.0	400	[6]
8	Pt/CNS	2.4	420	[7]
9	O substituted g-C ₃ N ₄	13.2	420	[8]
10	MoS ₂ /ZnIn ₂ S ₄	3.08	420	[9]
11	NiS/V-s-ZnIn ₂ S ₄ /WO ₃	72.0	420	[10]
12	ZnIn ₂ S ₄ /MoSe ₂	21.39	420	[11]


13	Co-P/ZnIn ₂ S ₄	4.3	420	[12]
14	g-C ₃ N ₄ @ZnIn ₂ S ₄	7.05	420	[13]
15	MoS ₂ /Cu-ZnIn ₂ S ₄	13.6	420	[14]
16	Cu ₃ P-FCN	3.74	420	[15]
17	B/P-CNNs	3.24	420	[16]
18	CNAs	5.07	420	[17]
19	FeP/g-C ₃ N ₄	1.57	420	[18]
20	g-C ₃ N ₄ /UMOFNs	2.34	405	[19]
21	3D CCNS-50	7.80	420	[20]
22	PtAu-2/g-C ₃ N ₄	0.45	420±10	[21]
23	HC-CN	6.17	420	[22]
24	C-PAN/g-C ₃ N ₄	5.60	420	[23]
25	g-C ₃ N ₄ NS/TMC	4.10	420	[24]


Fig. S7 Transient photocurrent–time (I–t) curves (a), electrochemical impedance spectroscopy (EIS) Nyquist plots of different samples in 0.2 M Na₂SO₄ solution (b), photoluminescence spectra (c) and linear sweep voltammetry (LSV) curves (d) of pristine g-C₃N₄, NC-g-C₃N₄ and DC-g-C₃N₄.

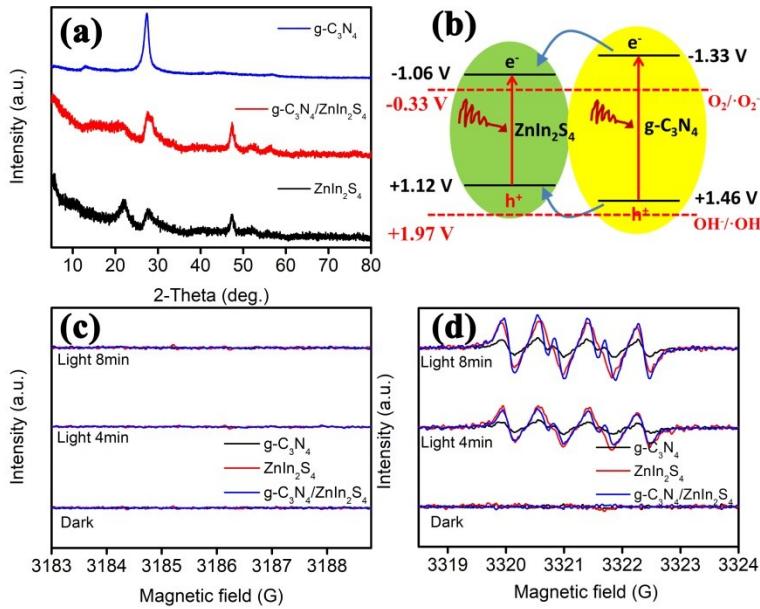
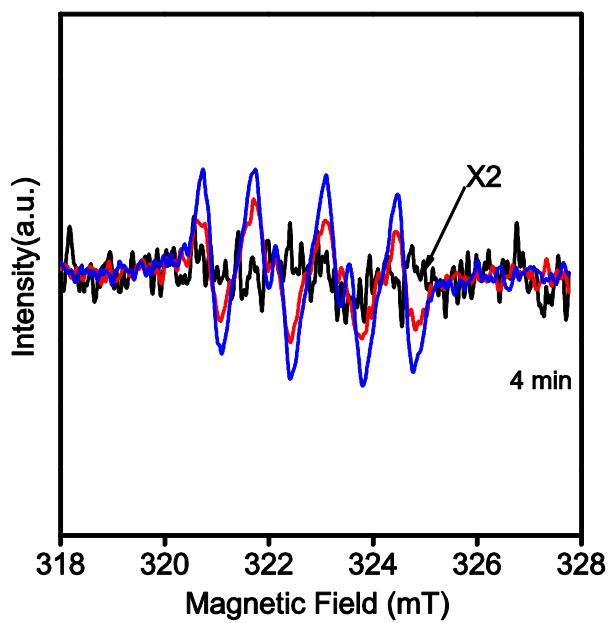
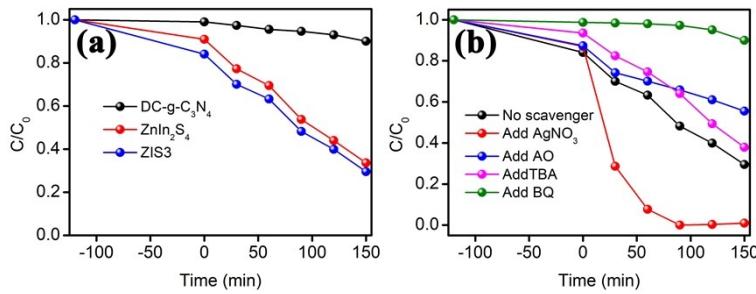

Fig. S8 Band gap energy of pristine g-C₃N₄.

Fig. S9 Mott-Schottky plots of pristine $g\text{-C}_3\text{N}_4$.


Fig. S10 Electronic structure of pristine $\text{g-C}_3\text{N}_4$ and DC- $\text{g-C}_3\text{N}_4$.


Fig. S11 XRD patterns of the as-prepared samples (a). Plausible charge transfer process between pristine g-C₃N₄ and ZnIn₂S₄ (b). •OH (c) and •O₂⁻ (d) radical active species text by EPR over g-C₃N₄, ZnIn₂S₄ and g-C₃N₄/ZnIn₂S₄ photocatalysts using DMPO as radical adducts.

Pristine g-C₃N₄ and g-C₃N₄/ZnIn₂S₄ photocatalysts were also prepared in this work for comparison and the corresponding XRD patterns were given in Fig. S11a. On the basis of Mott-Schottky data, the conduction band and valence band edge potentials were determined to be -1.33 V and 1.46 V versus NHE, respectively. And the band edge alignment of pristine g-C₃N₄ and ZnIn₂S₄ were illustrated in Fig. 11b. Clearly, a straddling gap feature exists between g-C₃N₄ and ZnIn₂S₄. Hence, the photogenerated electrons and holes are likely to transfer to ZnIn₂S₄ from g-C₃N₄, forming a type-I structure. Furthermore, EPR analyses can give further evidence of the above supposition. As shown in Fig. 11c, it is seen that no obvious DMPO-•OH EPR signal was observed for all as-prepared samples. On the other hand, the EPR data of •O₂⁻ (Fig. S11d) active species demonstrated that the reduction ability of photogenerated electrons for g-C₃N₄/ZnIn₂S₄ heterojunction had no obvious changed in comparison to

pristine g-C₃N₄ and ZnIn₂S₄, suggesting the formation of type-I structure between ZnIn₂S₄ and g-C₃N₄ without defects.

Fig. S12 EPR spectra of DC-g-C₃N₄, ZnIn₂S₄ and ZIS3 using DMPO as radical adducts for trapping $\bullet\text{O}_2^-$ species under visible light irradiation. The enlarge EPR signal represents DC-g-C₃N₄.

Fig. S13 Photocatalytic methyl orange (MO) degradation activity of DC-g-C₃N₄, ZnIn₂S₄ and ZIS3 (a). Effects of different scavengers on methyl orange degradation in the presence of ZIS3 under visible light irradiation (b).

Photocatalytic methyl orange degradation was selected as the model reaction aiming to investigate the photooxidation ability of the obtained samples. Fig. S13a declared that ZIS3 exhibited the higher degradation efficiency than their counterparts. And different scavengers were added in order to determine the primary radical species during the photocatalytic process, as displayed in Fig. S13b. Clearly, the photocatalytic performance of ZIS3 was apparently inhibited with the addition of ammonium oxalate (AO), tert-butyl alcohol (TBA) and benzoquinone (BQ) as hole (h^+), hydroxyl radical ($\bullet OH$) and superoxide radicals ($\bullet O_2^-$) scavenger, respectively. Meanwhile, the photocatalytic degradation efficiency was greatly enhanced with the addition of AgNO₃ because of the improvement of the separation efficiency of photogenerated carriers after Ag reduction. According to previous reports, hydroxyl radical ($\bullet OH$) and superoxide radicals ($\bullet O_2^-$) exhibited strong oxidation ability which play important roles in photocatalytic reaction. Hence, the photo-degradation MO was dominated by the photogenerated holes and the subsequent generated $\bullet O_2^-$ and $\bullet OH$.

Reference

[1] W. Xing, G. Chen, C. Li, Z. Han, Y. Hu, Q. Meng, Doping effect of non-metal group in porous ultrathin g-C₃N₄ nanosheets towards synergistically improved photocatalytic hydrogen evolution, *Nanoscale* 10 (2018) 5239-5245.

[2] B. Wang, Z. Deng, X. Fu, Z. Li, MoS₂/CQDs obtained by photoreduction for assembly of a ternary MoS₂/CQDs/ZnIn₂S₄ nanocomposite for efficient photocatalytic hydrogen evolution under visible light, *J. Mater. Chem. A* 6 (2018) 19735-19742.

[3] S. Sun, Y. Zhang, G. Shen, Y. Wang, X. Liu, Z. Duan, L. Pan, X. Zhang, J. Zou, Photoinduced composite of Pt decorated Ni(OH)₂ as strongly synergetic cocatalyst to boost H₂O activation for photocatalytic overall water splitting, *Appl. Catal. B: Environmental* 243 (2019) 253-261.

[4] M. Zhang, Q. Shang, Y. Wan, Q. Cheng, G. Liao, Z. Pan, Self-template synthesis of double-shell TiO₂@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation, *Appl. Catal. B: Environmental* 241 (2019) 149-158.

[5] R. Cao, H. Yang, X. Deng, P. Sun, S. Zhang, X. Xu, Construction of 3DOM carbon nitrides with quasi-honeycomb structures for efficient photocatalytic H₂ production, *ChemCatChem* 10 (2018) 5656-5664.

[6] D. Ruan, S. Kim, M. Fujitsuka, T. Majima, Defects rich g-C₃N₄ with mesoporous

structure for efficient photocatalytic H₂ production under visible light irradiation, Appl. Catal. B: Environmental 238 (2018) 638-646.

[7] M. Liu, P. Xia, L. Zhang, B. Cheng, J. Yu, Enhanced photocatalytic H₂-production activity of g-C₃N₄ nanosheets via optimal photodeposition of Pt as cocatalyst, ACS Sustain. Chem. Eng. 6 (2018) 10472-10480.

[8] C. Liu, H. Huang, W. Cui, F. Dong, Y. Zhang, Band structure engineering and efficient charge transport in oxygen substituted g-C₃N₄ for superior photocatalytic hydrogen evolution, Appl. Catal. B: Environmental 230 (2018) 115-124.

[9] C. Liu, B. Chai, C. Wang, J. Yan, Z. Ren, Solvothermal fabrication of MoS₂ anchored on ZnIn₂S₄ microspheres with boosted photocatalytic hydrogen evolution activity, Int. J. Hydrogen Energy 43 (2018) 6977-6986.

[10] Z. Li, J. Hou, B. Zhang, S. Cao, Y. Wu, Z. Gao, X. Nie, L. Sun, Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting, Nano Energy 59 (2019) 537-544.

[11] D. Zeng, L. Xiao, W. Ong, P. Wu, H. Zheng, Y. Chen, D. Peng, Hierarchical ZnIn₂S₄/MoSe₂ nanoarchitectures for efficient noble-metal-free photocatalytic hydrogen evolution under visible light, ChemSusChem 10 (2017) 4624-4631.

[12] Q. Liu, M. Wang, Y. He, X. Wang, W. Su, Photochemical route for synthesizing Co-P alloy decorated ZnIn₂S₄ with enhanced photocatalytic H₂ production activity

under visible light irradiation, *Nanoscale* 10 (2018) 19100-19106.

[13] B. Lin, H. Li, H. An, W. Hao, J. Wei, Y. Dai, C. Ma, G. Yang, Preparation of 2D/2D g-C₃N₄ nanosheet@ZnIn₂S₄ nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution, *Appl. Catal. B: Environmental* 220 (2018) 542-552.

[14] Y. Yuan, D. Chen, J. Zhong, L. Yang, J. Wang, M. Liu, W. Tu, Z. Yu, Z. Zou, Interface engineering of a noble-metal-free 2D-2D MoS₂/Cu-ZnIn₂S₄ photocatalyst for enhanced photocatalytic H₂ production, *J. Mater. Chem. A* 5 (2017) 15771-15779.

[15] W. Wang, X. Zhao, Y. Cao, Z. Yan, R. Zhu, Y. Tao, X. Chen, D. Zhang, G. Li, D. Phillips, Copper phosphide-enhanced lower charge trapping occurrence in graphitic-C₃N₄ for efficient noble-metal-free photocatalytic H₂ evolution, *ACS Appl. Mater. Inter.* (2019).

[16] B. Li, Y. Si, B. Zhou, Q. Fang, Y. Li, W. Huang, W. Hu, A. Pan, X. Fan, G. Huang, Doping-induced hydrogen-bond engineering in polymeric carbon nitride to significantly boost the photocatalytic H₂ evolution performance, *ACS Appl. Mater. Inter.* (2019).

[17] B. Lin, G. Yang, L. Wang, Stacking-layer-number dependence of water Adsorption in 3D ordered close-packed g-C₃N₄ nanosphere arrays for photocatalytic hydrogen evolution, *Angew. Chem. Int. Ed.* 58 (2019) 4587-4591.

[18] D. Zeng, T. Zhou, W. Ong, M. Wu, X. Duan, W. Xu, Y. Chen, Y. Zhu, D. Peng, Sub-5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous g-C₃N₄ for precious-metal-free photocatalytic hydrogen evolution under visible light, *ACS Appl. Mater. Inter.* 11 (2019) 5651-5660.

[19] Y. Liang, R. Shang, J. Lu, W. An, J. Hu, L. Liu, W. Cui, 2D MOFs enriched g-C₃N₄ nanosheets for highly efficient charge separation and photocatalytic hydrogen evolution from water, *Int. J. Hydrogen Energy* 44 (2019) 2797-2810.

[20] H. Gao, R. Cao, S. Zhang, H. Yang, X. Xu, Three-dimensional hierarchical g-C₃N₄ architectures assembled by ultrathin self-doped nanosheets: extremely facile hexamethylenetetramine activation and superior photocatalytic hydrogen evolution, *ACS Appl. Mater. Inter.* 11 (2019) 2050-2059.

[21] K. Bhunia, M. Chandra, S. Khilari, D. Pradhan, Bimetallic PtAu alloy nanoparticles-integrated g-C₃N₄ hybrid as an efficient photocatalyst for water-to-hydrogen conversion, *ACS Appl. Mater. Inter.* 11 (2019) 478-488.

[22] W. Xing, W. Tu, Z. Han, Y. Hu, Q. Meng, G. Chen, Template-induced high-crystalline g-C₃N₄ nanosheets for enhanced photocatalytic H₂ Evolution, *ACS Energy Lett.* 3 (2018) 514-519.

[23] F. He, G. Chen, J. Miao, Z. Wang, D. Su, S. Liu, W. Cai, L. Zhang, S. Hao, B. Liu, Sulfur-mediated Self-templating synthesis of tapered C-PAN/g-C₃N₄ composite

nanotubes toward efficient photocatalytic H₂ evolution, ACS Energy Lett. 1 (2016) 969-975.

[24] O. Elbanna, M. Fujitsuka, T. Majima, g-C₃N₄/TiO₂ mesocrystals composite for H₂ evolution under visible-light irradiation and its charge carrier dynamics, ACS Appl. Mater. Inter. 9 (2017) 34844-34854.