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Fig. S1 XRD patterns of g-C3N4, NC-g-C3N4 and DC-g-C3N4 (a). XRD patterns of 

DC-g-C3N4, ZnIn2S4, and DC-g-C3N4/ZnIn2S4 heterojunctions with different DC-g-

C3N4 loading content.
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Fig. S2 TEM images of g-C3N4.



Fig. S3 N2 adsorption-desorption isotherms (a) and the corresponding pore size 

distribution curves (b) of g-C3N4 and DC- g-C3N4.



Fig. S4 FT-IR spectra of g-C3N4 and DC-g-C3N4.



Fig. S5 XPS spectra: the survey spectrum of ZIS3 (a), Zn 2p orbital, (b) In 3d orbital 

(c) and S 2p orbital (d), respectively.



Fig. S6 Band gap energy of ZnIn2S4, DC-g-C3N4.



Table S1 Comparison of AQE of ZIS3 with those of other catalysts reported in 

literature.

Entry Catalysts AQE (%) Wavelength (nm) ref

1 ZIS3 18.2 420 this work

2 CNB NS 7.45 420 [1]

3 MoS2/CQDs/ZnIn2S4 25.6 420 [2]

4 Pt/Ni(OH)2-C3N4 11.2 420 [3]

5 γ-TiO2@ZIF-8 50.89 380 [4]

6
quasi-honeycomb g-

C3N4

6.27 400 [5]

7 g-C3N4-M1U2 74.0 400 [6]

8 Pt/CNS 2.4 420 [7]

9 O substituted g-C3N4 13.2 420 [8]

10 MoS2/ZnIn2S4 3.08 420 [9]

11 NiS/V-s-ZnIn2S4/WO3 72.0 420 [10]

12 ZnIn2S4/MoSe2 21.39 420 [11]



13 Co-P/ZnIn2S4 4.3 420 [12]

14 g-C3N4@ZnIn2S4 7.05 420 [13]

15 MoS2/Cu-ZnIn2S4 13.6 420 [14]

16 Cu3P-FCN 3.74 420 [15]

17 B/P-CNNs 3.24 420 [16]

18 CNAs 5.07 420 [17]

19 FeP/g-C3N4 1.57 420 [18]

20 g-C3N4/UMOFNs 2.34 405 [19]

21 3D CCNS-50 7.80 420 [20]

22 PtAu-2/g-C3N4 0.45 420±10 [21]

23 HC-CN 6.17 420 [22]

24 C-PAN/g-C3N4 5.60 420 [23]

25 g-C3N4 NS/TMC 4.10 420 [24]



Fig. S7 Transient photocurrent–time (I–t) curves (a), electrochemical impedance 

spectroscopy (EIS) Nyquist plots of different samples in 0.2 M Na2SO4 solution 

(b), photoluminescence spectra (c) and linear sweep voltammetry (LSV) curves (d) 

of pristine g-C3N4, NC-g-C3N4 and DC-g-C3N4.



Fig. S8 Band gap energy of pristine g-C3N4.



Fig. S9 Mott-Schottky plots of pristine g-C3N4.



Fig. S10 Electronic structure of pristine g-C3N4 and DC-g-C3N4.



Fig. S11 XRD patterns of the as-prepared samples (a). Plausible charge transfer 

process between pristine g-C3N4 and ZnIn2S4 (b). •OH (c) and •O2
− (d) radical active 

species text by EPR over g-C3N4, ZnIn2S4 and g-C3N4/ZnIn2S4 photocatalysts using 

DMPO as radical adducts.

Pristine g-C3N4 and g-C3N4/ZnIn2S4 photocatalysts were also prepared in this work 

for comparison and the corresponding XRD patterns were given in Fig. S11a. On the 

basis of Mott-Schottky data, the conduction band and valence band edge potentials 

were determined to be -1.33 V and 1.46 V versus NHE, respectively. And the band 

edge alignment of pristine g-C3N4 and ZnIn2S4 were illustrated in Fig. 11b. Clearly, a 

straddling gap feature exists between g-C3N4 and ZnIn2S4. Hence, the photogenerated 

electrons and holes are likely to transfer to ZnIn2S4 from g-C3N4, forming a type-I 

structure. Furthermore, EPR analyses can give further evidence of the above 

supposition. As shown in Fig. 11c, it is seen that no obvious DMPO-•OH EPR signal 

was observed for all as-prepared samples. On the other hand, the EPR data of •O2
− 

(Fig. S11d) active species demonstrated that the reduction ability of photogenerated 

electrons for g-C3N4/ZnIn2S4 heterojunction had no obvious changed in comparison to 



pristine g-C3N4 and ZnIn2S4, suggesting the formation of type-I structure between 

ZnIn2S4 and g-C3N4 without defects.



Fig. S12 EPR spectra of DC-g-C3N4, ZnIn2S4 and ZIS3 using DMPO as radical 

adducts for trapping •O2
- species under visible light irradiation. The enlarge EPR 

signal represents DC-g-C3N4.



Fig. S13 Photocatalytic methyl orange (MO) degradation activity of DC-g-C3N4, 

ZnIn2S4 and ZIS3 (a). Effects of different scavengers on methyl orange degradation in 

the presence of ZIS3 under visible light irradiation (b).

Photocatalytic methyl orange degradation was selected as the model reaction 

aiming to investigate the photooxidation ability of the obtained samples. Fig. S13a 

declared that ZIS3 exhibited the higher degradation efficiency than their counterparts. 

And different scavengers were added in order to determine the primary radical species 

during the photocatalytic process, as displayed in Fig. S13b. Clearly, the 

photocatalytic performance of ZIS3 was apparently inhibited with the addition of 

ammonium oxalate (AO), tert-butyl alcohol (TBA) and benzoquinone (BQ) as hole 

(h+), hydroxyl radical (•OH) and superoxide radicals (•O2
-) scavenger, respectively. 

Meanwhile, the photocatalytic degradation efficiency was greatly enhanced with the 

addition of AgNO3 because of the improvement of the separation efficiency of 

photogenerated carriers after Ag reduction. According to previous reports, hydroxyl 

radical (•OH) and superoxide radicals (•O2
-) exhibited strong oxidation ability which 

play important roles in photocatalytic reaction. Hence, the photo-degradation MO was 

dominated by the photogenerated holes and the subsequent generated •O2
- and •OH.
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