Electronic Supplementary Information for

Surface Structure-Dependent Electrocatalytic Reduction of CO₂ to

C1 Products on SnO₂ Catalysts

Minling Fang,^a Zhiping Zheng,^a Jiayu Chen,^a Qian Chen,^a Binbin Xu,^a Deyu Liu,^c Jianyang Wu,^a Qin Kuang,^{a,*} and Zhaoxiong Xie,^{a,b,*}

^a State Key Laboratory of Physical Chemistry of Solid Surfaces & Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (P. R. China). E-mail: <u>qkuang@xmu.edu.cn</u>; <u>zxxie@xmu.edu.cn</u>. Fax: (+) 86-592-2183047.

^b Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.

^c Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences. 1219 Zhongguan West Road, Ningbo 315201, China.

Fig. S1 Schematic illustration of the electrochemical reduction of CO_2 with an H-type 3 electrode cell.

Fig. S2 a) LSVs of SnO_2 in N_2/CO_2 saturated 0.5 M NaHCO₃ solution; Chronoamperograms for b) Oct-{111}-SnO₂, c) Oct-{221}-SnO₂ and d) Rod-{110} SnO₂ at different potential in CO₂ saturated 0.5 M NaHCO₃.

Fig. S3 Faradaic efficiency of H_2 (black line) and CO (red line) for Oct-{221} at different potentials in CO₂-saturated 0.5 M NaHCO₃ aqueous solution.

Fig. S4 Faradaic efficiency of H_2 (black line) and CO (red line) for Rod-{110} at different potentials in CO₂-saturated 0.5 M NaHCO₃ aqueous solution.

Fig. S5 XRD patterns of different facets SnO₂ after ECR.

Fig. S6 SEM images of a) Oct-{111}, b) Oct-{221} and c) Rod-{110} after electroreduction catalysis.