Supporting Information

Selective hydrogenation of furfural to tetrahydrofurufuryl alcohol over Rh-loaded carbon catalyst in aqueous media under mild conditions

Babasaheb M. Matsagar,*a† Chang-Yen Hsu,a† Season S. Chen,b Tansir Ahamad,c Saad M Alshehri,c Daniel C.W. Tsang,b,* and Kevin C.-W. Wu*a,c,d

*a Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
bDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
cDepartment of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
dCenter of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taiwan
eInternational Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taiwan

† The first two authors contributed the paper equally

Email of corresponding authors matsagar03@ntu.edu.tw, dan.tsang@polyu.edu.hk, kevinwu@ntu.edu.tw
Fig. S1 XRD of Rh/C catalyst

Fig. S2 TEM-EDS elemental mapping for Rh/C catalyst.
Fig. S3 (a) XPS of Rh 3d for Rh/C catalyst, (b) XPS of C 1s for Rh/C catalyst.
Scheme 1: Synthesis of Ni/CB. For the synthesis of Ni/AC AC was used instead of CB.

Scheme 2: Synthesis of Ni/C derived from Ni-MOF.
Fig. S4 XRD of Ni/CB catalyst after reduction at 450 °C.

Fig. S5 XRD of Ni/C catalyst derived from Ni-MOF after reduction at 450 °C.
Fig. S6 SEM of Ni/CB catalyst.

Fig. S7 SEM of Ni/C catalyst derived from Ni-MOF.
Fig. S8 XRD of Active carbon and Rh/C catalyst.

Fig. S9 XRD of Rh/Al₂O₃ catalyst.
Fig. S10 Effect of reaction time on the FOL hydrogenation under ambient H₂ pressure. Reaction condition: FOL 12 mg, Rh/C 5 mg, DMA 5 mL, H₂ gas flow rate 30 mL min⁻¹, 30 ºC.

Fig. S11 Effect of reaction time on the FAL hydrogenation under ambient H₂ pressure. Reaction condition: FAL 23 mg, Rh/C 10 mg, DMA 10 mL, H₂ gas flow rate 30 mL min⁻¹, 30 ºC.
Fig. S12 Effect of substrate concentration on the FOL hydrogenation under ambient H₂ pressure. Reaction condition: Rh/C 5 mg, DMA 5 mL, H₂ gas flow rate 30 mL min⁻¹, 16 h.

Fig. S13 Effect of substrate concentration on the FAL hydrogenation. Reaction condition: Rh/C 25 mg, H₂O 25 mL, H₂ pressure 1 MPa, 30 ℃, 8 h.
Fig. S14 (a) The rate constant for FAL hydrogenation into FOL, (b) Arrhenius plot for FAL hydrogenation into FOL. Reaction condition: FAL 60 mg, Rh/C 25 mg, water 25 mL, H₂ gas flow rate 30 mL min⁻¹.
Fig. S15 Proposed mechanism for the hydrogenation of FAL into THFA over Rh/C catalyst.