Supporting Information

Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over Rh-loaded carbon catalyst in aqueous media under mild conditions

Babasaheb M. Matsagar,^{*a[†]} Chang-Yen Hsu,^{a[†]} Season S. Chen,^b Tansir Ahamad,^c Saad M Alshehri,^c Daniel C.W. Tsang,^{*b} and Kevin C.-W. Wu^{*a,c,d}

^a Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

^bDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

[°]Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

^dCenter of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taiwan

^e International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taiwan

[†]The first two authors contributed the paper equally

Email of corresponding authors <u>matsagar03@ntu.edu.tw</u>, <u>dan.tsang@polyu.edu.hk</u>, <u>kevinwu@ntu.edu.tw</u>

Fig. S1 XRD of Rh/C catalyst

Fig. S2 TEM-EDS elemental mapping for Rh/C catalyst.

Fig. S3 (a) XPS of Rh 3d for Rh/C catalyst, (b) XPS of C 1s for Rh/C catalyst.

Scheme 1 Synthesis of Ni/CB. For the synthesis of Ni/AC AC was used instead of CB.

Scheme 2 Synthesis of Ni/C derived from Ni-MOF.

Fig. S4 XRD of Ni/CB catalyst after reduction at 450 °C.

Fig. S5 XRD of Ni/C catalyst derived from Ni-MOF after reduction at 450 °C.

Fig. S7 SEM of Ni/C catalyst derived from Ni-MOF.

Fig. S8 XRD of Active carbon and Rh/C catalyst.

Fig. S9 XRD of Rh/Al₂O₃ catalyst.

Fig. S10 Effect of reaction time on the FOL hydrogenation under ambient H_2 pressure. Reaction condition: FOL 12 mg, Rh/C 5 mg, DMA 5 mL, H_2 gas flow rate 30 mL min⁻¹, 30 °C.

Fig. S11 Effect of reaction time on the FAL hydrogenation under ambient H_2 pressure. Reaction condition: FAL 23 mg, Rh/C 10 mg, DMA 10 mL, H_2 gas flow rate 30 mL min⁻¹, 30 °C.

Fig. S12 Effect of substrate concentration on the FOL hydrogenation under ambient H_2 pressure. Reaction condition: Rh/C 5 mg, DMA 5 mL, H_2 gas flow rate 30 mL min⁻¹, 16 h.

Fig. S13 Effect of substrate concentration on the FAL hydrogenation. Reaction condition: Rh/C 25 mg, H_2O 25 mL, H_2 pressure 1 MPa, 30 °C, 8 h.

Fig. S14 (a) The rate constant for FAL hydrogenation into FOL, (b) Arrhenius plot for FAL hydrogenation into FOL. Reaction condition: FAL 60 mg, Rh/C 25 mg, water 25 mL, H_2 gas flow rate 30 mL min⁻¹.

Fig. S15 Proposed mechanism for the hydrogenation of FAL into THFA over Rh/C catalyst.