Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Supporting information

Catalytic depolymerization of alkali lignin in ionic liquid on Ptsupported La₂O₃-SO₄²⁻/ZrO₂ catalysts

Xiuhui Wang ^a, Yi Luo ^a, Moriko Qian ^b, Eika W. Qian ^{a*}

 ^a Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan.
 ^b Department of Biological System Engineering, Washington State University, Richland, Washington 99345-1671, United States.

* Corresponding author.

E-mail address: whqian@cc.tuat.ac.jp (E.W. Qian).

Tel/Fax: +81-42-388-7410

Figure S1. NH₃-TPD profiles of the support and reduced catalysts.

Figure S2. XPS spectra of Pt 4f X and La 3d for the reduced La_2O_3/SZ , Pt/SZ and PtLa χ/SZ catalysts.

Figure S3. XPS spectra of O 1s for the reduced La $_2O_3/SZ$, Pt/SZ and PtLa χ/SZ catalysts.

Figure S4. GC-FID chart of liquid products in lignin depolymerization with different catalysts (210 °C, WHSV of 3.8 h^{-1}).

Figure S5. GC-FID chart of liquid products from pretreatment unit (90 °C, 3h), a: guaiacol; b: guaiacylglycerol- β -guaiacyl ether (GG).

Figure S6. GC-FID chart of liquid products from guaiacylglycerol- β -guaiacyl ether (GG) in reaction unit with different catalysts (210 °C; 1h; a: SZ catalyst; b: Pt/SZ catalyst).

No.	Compounds	Structure
1	Furfuryl alcohol	OH
2	Benzaldehyde	HO
3	2,6-Xylenol	
4	4-Vinylphenol	но
5	Iso-creosol	ОН
6	6-Methylsalicylic acid ethyl ester	OH OH
7	4-Hydroxyphenylacetic acid	HO
8	2,6-Dimethylstyrene	
9	1,5-Dihydroxy-1,2,3,4- tetrahydro naphthalene	OH OH
10	2,2'-Biphenol	CH HO
11	Butylated hydroxytoluene	
12	1-(4-Hydroxy-3,5- dimethoxyphenyl) propan-1-one	о с с

Table S1. Identification of liquid products by means of GC-MS.

NO.	Compounds	SZ	Pt/SZ	La ₂ O ₃ /SZ	PtLa1/SZ	PtLa3/SZ	PtLa6/SZ
1	Furfuryl alcohol	3.44	4.50	4.07	7.50	6.46	5.96
2	Benzaldehyde	1.40	2.44	2.64	2.39	4.50	3.37
8	2,6-Dimethylstyrene	1.03	1.06	1.26	1.24	1.58	1.18
	Y _{np}	5.87	8.00	7.98	11.10	12.50	10.50
3	2,6-Xylenol	0.193	1.06	1.21	1.08	1.12	0.59
4	4-Vinylphenol	5.49	9.43	9.91	8.09	13.67	9.28
5	Iso-creosol	0.38	0.45	0.415	0.42	0.42	0.17
6	6-Methylsalicylic acid ethyl ester	0.87	0.66	0.361	0.24	0.20	0.33
7	4-Hydroxyphenylacetic acid	3.48	3.59	4.87	3.72	5.02	5.32
9	1,5-Dihydroxy-1,2,3,4- tetrahydro naphthalene	2.08	2.69	3.10	3.58	1.58	2.73
10	2,2'-Biphenol	0.73	1.04	2.77	2.30	2.45	2.26
11	Butylated hydroxytoluene	0.15	1.21	1.25	1.17	4.05	1.31
	1-(4-Hydroxy-3,5-						
12	dimethoxyphenyl) propan-1-	0.00	0.16	0.26	0.65	1.25	0.68
one							
Y_p		13.4	18.7	24.1	21.2	28.7	22.7
$Y_{np}+Y_p$		19.3	26.7	32.1	32.3	41.2	33.2
Yc		30.6	44.9	47.8	58.4	63.9	52.1

 Table S2. Yields of various identified liquid products (C-based, mol %).

 Y_c , total yields of carbon-based products; Y_p , yields of phenolic compounds; Y_{np} , yields of nonphenolic compounds.