Supplementary Information

Table SI1: List of literature cost estimates used in our study. Values are scaled to a standardised capacity using the six-tenths rules for ease of comparison.

Process	Capacity [units]	Investment	Scaled capacity	Scaled	Ref
		Cost	[units]	cost	
		(M GBP ₂₀₁₇)		(M	
				GBP ₂₀₁₇)	
	36 [MW]	28		136	1
	10 [MW]	6		67	2
	10 [MW]	12		123	2
Electrolysis	44 [MW]	39	500 [MW _{LHV}]	167	3
	1 [MW]	1.2		51	3
	200 [MW]	76.3		132	3
	1270 [MW]	1828		1045	4
	1 [Mt]	860	1 [N/+]	UB: 860	5
DAC	1 [Mt]	590		LB: 590	5
	311 [m ³ h ⁻¹ _{CH4}]	0.61		20	1
Methanation	216000 [m ³ h ⁻¹ _{CH4}]	3560	10 ⁵ [m ³ h ⁻¹ _{CH4}]	570	6
	70 [m ³ h ⁻¹ _{CH4}]	0.48		38	7
	2×10 ⁶ [Nm ³]	50		82	8
	1×10 ⁵ [Nm ³]] 8		77	1
	5×10 ⁴ [Nm ³]	5		68	1
H ₂ Storage**	4×10 ⁷ [Nm ³]	380	10 ⁵ [Nm ³]	108	9
	5×10 ⁷ [Nm ³]	390		91	9
	4×10 ⁷ [Nm ³]	390		107	9
	4×10 ⁸ [Nm ³]	340		23	4
	1x10 ⁸ [Nm ³]	48		8	10
	1x10 ⁸ [Nm ³]	69		11	10
CH Storage	1x10 ⁸ [Nm ³]	21	10^{5} [Nm ³]	3	10
Chi4 Storage	5x10 ⁷ [Nm ³]	42		10	10
	3×10 ⁷ [Nm ³]	8		3	11
	3x10 ⁸ [Nm ³]	69		6	11
HGCC	16 [MW]	53	500 [MW _e]	418	12
	702 [MW]	530		430	13
	1 [MW]	0.6		320	14
	507 [MW]	305		300	15
CCGT	560 [MW]	261	500 [N4\N/]	240	15
	550 [MW]	277	500 [lvive]	260	15
	543 [MW]	330		310	15
	431 [MW]	180		200	16
	630 [MW]	326		280	17
CCCT CCS	1000 [MW]	1460		960	14
	432 [MW]	420		460	15

	482 [MW]	470		490	15
	467.5 [MW]	400 dw		420	15
	482[MW]	510		520	15
	559 [MW]	650		600	17
	1.2×10 ⁵ [kg _{H2} d ⁻¹]	86		75	18
	6.3×10 ⁵ [kg _{H2} d ⁻¹]	190		62	19
SMR	1.15×10² [kg _{H2} d ⁻¹]	0.3	1×105 [kg d-1]	16	20
	1.2×10 ⁶ [kg _{H2} d ⁻¹]	470	1×10 ³ [kg _{H2} d ¹]	105	21
	2.4×10 ⁴ [kg _{H2} d ⁻¹]	20		48	21
	4.8×10 ² [kg _{H2} d ⁻¹]	0.9		22	21
	1.2×10 ⁵ [kg _{H2} d ⁻¹]	111***		97	18
	6.3×10 ⁵ [kg _{H2} d ⁻¹]	220		73	19
	5.16×10 ⁵ [kg _{H2} d ⁻¹]	320 260 1x10 ⁵ [kg d ⁻¹]		120	22
	2.32×10 ⁵ [kg _{H2} d ⁻¹]			160	23
SIVIN-CCS	1.2×10 ⁶ [kg _{H2} d ⁻¹]	590	1×10- [kg _{H2} u -]	130	21
	2.4×10 ⁴ [kg _{H2} d ⁻¹]	28		65	21
	9.13×10 ⁵ [kg _{H2} d⁻¹]	1082		290	4
	6.1×10 ⁵ [kg _{H2} d ⁻¹]	460		190	24
	2.14×10 ⁵ [kg _{H2} d ⁻¹]	23		14	25
	1.5×10 ⁵ [kg _{H2} d⁻¹]	1.4		1	26
ATR	1.15×10² [kg _{H2} d ⁻¹]	0.2	1×10 ⁵ [kg _{H2} d ⁻¹]	14	20
	1×10² [kg _{H2} d ⁻¹]	0.3		18	27
	1×10 ⁶ [kg _{H2} d ⁻¹]	71		18	27
ATR-CCS	2.32×10 ⁵ [kg _{H2} d ⁻¹]	200		120	23
	9.13×10 ⁵ [kg _{H2} d ⁻¹]	950	1×10 ⁵ [kg _{H2} d ⁻¹]	250	4
	6.1×10 ² [kg _{H2} d ⁻¹]	580		150	24

*CCS and DAC estimates include compression costs

 $\ast\ast$ Capacity is calculated working capacity assuming 30% of physical cavern size is for cushion gas

***This value assumes 30% increase over regular SMR as prescribed by the corresponding reference

Table SI2: Breakdown of operating cost assumptions based on Coulson and Richardson.²⁸

Variable Costs					
Raw materials	Calculated from Aspen flow sheet				
Miscellaneous materials	10% of Maintenance cost				
Utilities	Calculated from Aspen flow sheet using data				
	from Table SI3				
Fixed Cost					
Maintenance	5% of fixed capital				
Operating labour	Assumes pay of 30 GBP ₂₀₁₇ per hour pay for 5				
	shift crews with 3 shifts a day and 50% extra for				
	allowances and overheads.				
Laboratory costs	20% of operating labour				
Supervision	20% of operating labour				
Plant overheads	50% of operating labour				
Capital charges	10% of fixed capital				
Insurance	1% of fixed capital				
Local Taxes	2% of fixed capital				
Royalties	1% of fixed capital				

Table SI3: Price of the main utilities

Utility	Cost (GBP ₂₀₁₇)	Units	Ref
Electricity	0.0939	/kWh	29
Process water	0.93	/t	30
Cooling water	0.014	/t	28

		Electrolyser Feed	H2 leaving electrolyser	DAC feed	CO2 captured by DAC	Sabatier feed	Sabatier exit	Salt cavern feed	SNG into CCGT	Air in	Final Flue gas
Temperature	к	298.00	333.00	298.00	318.00	330.08	573.00	323.15	323.15	298.00	298.00
Pressure	bar	1.01	30.00	1.01	1.01	1.01	20.00	100.00	100.00	1.01	1.01
Mole Flows	kmol/sec	4.28	4.28	3588.44	1.07	5.35	3.24	1.13	1.13	12.31	15.98
СО	kmol/sec	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO2	kmol/sec	0.00	0.00	1.44	1.07	1.07	0.02	0.02	0.02	0.00	1.07
H2	kmol/sec	0.00	4.28	0.00	0.00	4.28	0.06	0.06	0.06	0.00	0.85
CH4	kmol/sec	0.00	0.00	0.00	0.00	0.00	1.05	1.05	1.05	0.00	0.00
02	kmol/sec	0.00	0.00	751.60	0.00	0.00	0.00	0.00	0.00	2.58	3.00
H2O	kmol/sec	4.28	0.00	0.00	0.00	0.00	2.11	0.00	0.00	0.00	1.32
N2	kmol/sec	0.00	0.00	2801.89	0.00	0.00	0.00	0.00	0.00	9.62	9.62
AR	kmol/sec	0.00	0.00	33.52	0.00	0.00	0.00	0.00	0.00	0.12	0.12
Mass Flows	kg/sec	77.06	8.62	103943.02	47.06	55.68	55.68	17.73	17.73	356.71	442.87
CO	kg/sec	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO2	kg/sec	0.00	0.00	63.17	47.06	47.06	0.70	0.70	0.70	0.22	47.28
H2	kg/sec	0.00	8.62	0.00	0.00	8.62	0.13	0.13	0.13	0.00	1.71
CH4	kg/sec	0.00	0.00	0.00	0.00	0.00	16.90	16.90	16.90	0.00	0.00
02	kg/sec	0.00	0.00	24050.26	0.00	0.00	0.00	0.00	0.00	82.53	96.11
H2O	kg/sec	77.06	0.00	0.00	0.00	0.00	37.95	0.00	0.00	0.00	23.82
N2	kg/sec	0.00	0.00	78490.69	0.00	0.00	0.00	0.00	0.00	269.36	269.36
AR	kg/sec	0.00	0.00	1338.90	0.00	0.00	0.00	0.00	0.00	4.59	4.59

Table SI4: Simplified stream table for Case 2 (DAC + Electrolysis to produce SNG for storage and subsequent combustion for power).

Operating & Maintenance (O&M) cost calculations

There are two components of the O&M costs: variable and fixed. To calculate fixed costs such as capital charges, insurance, local taxes and royalties, the investment (capital) costs are multiplied by the numbers reported in the "Fixed Costs" sub-section in Table SI2. The Laboratory, supervision and plant overheads are calculated as a fraction of the operating labour.

The variable costs, on the other hand, were calculated depending on the technology.

Electrolysis: We assume the only operating costs are water and electricity. The cost of water is determined by the product of the process water price (see Table SI3) and the equivalent amount of water required to produce the H₂. The electricity cost is a product of the electricity price and power requirements for the electrolyser.

DAC: We assume that the operating costs are mainly associated with the adsorbent make up, electricity to run equipment and caustic solution for adsorbent regeneration. We assume an adsorbent purge and make up rate of 3% and a solvent make up rate of 1%. The solids purge rate is similar to that of other sorbent looping processes^{31, 32} while the 1% solvent loss is used considering the fact that sodium hydroxide has low volatility. The energy requirements for the equipment (absorber fans, liquid pump, precipitator and slaker, ASU and calciner) were all taken from Keith et al.⁵ and scaled according to the total CO₂ captured.

PCC: For the Case scenarios which include post-combustion CO_2 capture (PCC), we assume the operating costs come from the CCS solvent make up, the steam used to strip the CO_2 and the energy required to regenerate the solvent. The reboiler duty³³ was taken to be 3395 kJ/kg_{CO2} while the solvent purge rate was assumed to be 2%.³⁴

CCGT/HTCC: For the turbines, we assume the only operating cost to be water for cooling and air for combustion. Here the average water consumption¹⁶ is multiplied by the water cost in SI3 while the air is costed by multiplying the price of compressed air with the air requirements derived from the mass balances in Table SI4.

Figure SI2: Sensitivity analysis on the capacity factor

References

- 1. M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert and T. Kolb, *Renew Energ*, 2016, **85**, 1371-1390.
- 2. FCH JU, Commercialisation of Energy Storage in Europe, 2015.
- 3. S. M. Saba, M. Müller, M. Robinius and D. Stolten, Int J Hydrogen Energ, 2018, 43, 1209-1223.
- 4. D. Sadler and H. S. Anderson, *H21 NoE Report/2018 H21 North of England*, 2018.
- 5. D. W. Keith, G. Holmes, D. St. Angelo and K. Heidel, *Joule*, 2018, **2**, 1573-1594.
- 6. J. Baier, G. Schneider and A. Heel, *Frontiers in Energy Research*, 2018, **6**.
- 7. DNV KEMA, Systems Analyses Power to Gas: A technology review, 2013.
- 8. J. B. Taylor, J. E. A. Alderson, K. M. Kalyanam, A. B. Lyle and L. A. Phillips, *Int J Hydrogen Energ*, 1986, **11**, 5-22.
- 9. D. Gammer, Loughborough, UK: Energy Technologies Institute, 2015.
- 10. R. Rumbauskaitė and G. Zwart, *Tilburg University, School of Economics and Management*, 2011.
- 11. Federal Energy Regulatory Commission, *Current State of and Issues Concerning*

Underground Natural Gas Storage Underground Natural Gas Storage, 2004.

- 12. Enel, Enel: First hydrogen-fuelled power now on line in Venice, <u>https://www.enel.com/media/press/d/2009/08/enel-first-hydrogen-fuelled-power-now-on-line-in-venice-</u>, (accessed 10/02/2019).
- 13. U. EIA, US Department of Energy, Energy Information Administration. Parts on PHP and batteries <u>http://www</u>. eia.

gov/analysis/studies/powerplants/capitalcost/pdf/capcost_assumption. pdf, 2016.

- 14. D. Gammer, *Reducing the cost of CCS Developments in Capture Plant Technology*, 2016.
- 15. M. Al Juaied and A. Whitmore, *Realistic costs of carbon capture*, Energy Technology Innovation Policy Research Group, Belfer Center for ..., 2009.
- 16. J. S. Maulbetsch and M. N. DiFilippo, *California Energy Commission*, 2006.
- 17. L. Irlam, *Global Costs of Carbon Capture and Storage*, Global CCS Institute, 2017.
- 18. J. C. Molburg and R. D. Doctor, 2003.
- 19. IEAGHG, *Techno-Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS*, 2017.
- 20. D. B. Myers, G. D. Ariff, B. D. James, J. S. Lettow, C. Thomas and R. C. Kuhn, *The Hydrogen Program Office*, 2002.
- 21. National Research Council, *The hydrogen economy: opportunities, costs, barriers, and R&D needs*, National Academies Press, 2004.
- 22. MIT, Port Arthur Fact Sheet: Carbon Dioxide Capture and Storage Project, 2016.
- 23. S. French, *Journal*, 2018.
- 24. I. Walker, B. Madden and F. Tahir, *Hydrogen supply chain evidence base*, 2018.
- 25. Z. Chen and S. S. Elnashaie, *Asia -Pacific Journal of Chemical Engineering*, 2006, **1**, 5-12.
- 26. F. Qasim, J. S. Shin, J. H. Jeong and S. J. Park, 2016.
- 27. Z. Chen and S. S. Elnashaie, *Ind Eng Chem Res*, 2005, **44**, 4834-4840.
- 28. R. K. Sinnott, *Chemical engineering design*, Elsevier, 2014.
- 29. BEIS, Quarterly Energy Prices Table Annex, June 2018, 2018.
- 30. Thames Water Utilities Limited, *Journal*, 2018.
- 31. C. C. Dean, J. Blamey, N. H. Florin, M. J. Al-Jeboori and P. S. Fennell, *Chemical Engineering Research and Design*, 2011, **89**, 836-855.
- 32. D. P. Connell, D. A. Lewandowski, S. Ramkumar, N. Phalak, R. M. Statnick and L.-S. Fan, *Fuel*, 2013, **105**, 383-396.
- 33. A. Mangiaracina, L. Zangrilli, L. Robinson, H. M. Kvamsdal and P. Van Os, *Energy Procedia*, 2014, **63**, 1617-1636.

34. R. Socolow, M. Desmond, R. Aines, J. Blackstock, O. Bolland, T. Kaarsberg, N. Lewis, M. Mazzotti, A. Pfeffer and K. Sawyer, *Report, American Physical Society (APS)*, 2011.