Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Sustainable Energy & Fuels

Micropores-in-Macroporous Gel Polymer Electrolytes for Alkali Metal Batteries

Hadi Khani, Somayyeh Kalami, and John B. Goodenough*

Materials Science and Engineering Program and Texas Materials Institute, The University of

Texas at Austin, Austin, Texas 78712, United States

* Corresponding author. Tell.: +1 662 325 7608; fax: +1 662 325 1618.

E-mail address: jgoodenough@mail.utexas.edu (J. B. Goodenough)

Figure S1. SEM images of (a, b) HCFu and (c, d) HCPy particles after being removed from the PH polymer host (see Experimental Section)

Figure S2. (a) Cross-sectional SEM image, (b) surface SEM image, and (c) oxygen-EDX image of HCFu-PH membrane

Figure S3. (a) Cross-sectional SEM image, (b) surface SEM image, and (c) nitrogen-EDX image of HCPy-PH membrane

Figure S4. FTIR spectra of PH, HCPy-PH, and HCFu-PH membranes

Figure S5. (a) TGA and (b) DSC curves of PH, HCPy-PH, and HCFu-PH membranes.

Figure S6. (a) Flame and (b) shrinkage tests for PH membrane.

Figure S7. Stress-strain curves of PH, HCPy-PH, and HCFu-PH membranes.

Cathode	Liquid Electrolyte	Anode	Polymer Electrolyte/Separator	Conductivity (S/cm)	ΔV	Reported full-cell performance	Ref.
LiFePO ₄	LiPF ₆ in EC/DMC/EMC	Li	PVDF-LiPVAOB ^a	2.60×10^{-4}	4.8	25 cycles at 0.2 C	1
LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂	LiTFSI in Dimethyl Sulfoxide	Li	Cellulose Membrane	6.34 × 10 ⁻³	4.6	50 cycles at 0.2 C (90% C.R.) ^h	2
LiFePO ₄	LiPF ₆ in EC/DMC	Li	P(EGDA-co-VC)/PVDF-HFP ^b	1.49 ×10 ⁻³	4.2	100 cycles at 0.3 C	3
$Li_{1.18}Co_{0.15}Ni_{0.15}Mn_{0.52}O_2$	LiPF ₆ in EC/DMC/EMC	Li	BN ^c -(PVDF-HFP)	4.10 × 10 ⁻⁴	-	300 cycles at 0.5 C (79% C.R.)	4
LiFePO ₄	LiPF ₆ in EC/DMC	Li	(PEGDE+DEBA+DPPO) ^d @PVDF-HFP	2.36×10^{-3}	4.2	200 cycles at 0.3 C (99.3% C.R.)	5
LiFePO ₄	LiPF ₆ in EC/DMC/ EMC/DEC/2 wt% VC	Li	Al-doped Li _{6.75} La ₃ Zr _{1.75} Ta _{0.25} O ₁₂ @PVDF-HFP	0.74×10^{-3}	-	500 cycles at 2 C	6
LiFePO ₄	LiPF ₆ in EC/DEC	Li	PVDF-HFP- Li ₇ La ₃ Zr ₂ O ₁₂	3.71 × 10 ⁻⁴	4.65	200 cycles at 0.2 C (83.8% C.R.)	7
LiCoO ₂	LiPF ₆ in EC/DMC	Li	PEO/PMMA/P(VDF-HFP)/SiO ₂	2.02 ×10 ⁻³	5.3	100 cycles at 0.1 mA/cm ² (99% C.R.)	8
Na ₃ V ₂ (PO ₄) ₂ F ₃	NaPF ₆ in PC	Na	PEO/PMMA/P(VDF-HFP)/SiO ₂	$8.80 imes 10^{-4}$	4.9	100 cycles at 0.1 mA/cm ² (93% C.R.)	8
Na ₃ V ₂ (PO ₄) ₃	NaClO ₄ in EC/PC/ 5 wt% FEC	Na	Cross-linked MATEMP ^e	5.13 × 10 ⁻³	5	1000 cycles at 1 C (81.6% C.R.)	9
Na _{0.44} MnO ₂	NaClO ₄ in PC/ 2 wt% FEC	Na	PVDF-HFP	1.91 × 10 ⁻³	4	20 cycles at 0.1 C	10
$Na_3V_2(PO_4)_3$	NaPF ₆ in EC/DMC/ 2 wt% FEC	Na	(cross-linked PEGDE-DPPO) @GF ^f	2.18×10^{-3}	4.8	2000 cycles at 1 C (95% C.R.)	11
Na ₃ V ₂ (PO ₄) ₃	NaClO ₄ in EC/PC/ 5 wt% FEC	Na	Cross-linked MATEPP ^g	6.29 × 10 ⁻³	4.9	10000 cycles at 5 C (69.2% C.R.)	12
LiFePO ₄	LiPF ₆ in EC/DEC	Li	HCFu-PH	6.4×10^{-3}	4.7	1000 cycles at 1 C (78% C.R.)	This work
$Na_3V_2(PO_4)_3$	NaClO ₄ in PC/ 5 wt% FEC	Na	НСРу-РН	4.3×10^{-3}	4.5	1000 cycles at 1 C (94% C.R.)	This work

Table S1. The performance comparison of recently reported GPEs for sodium and lithium batteries.

- a. Lithium polyvinyl alcohol oxalate borate (LiPVAOB).
- b. Poly (ethylene glycol) diacrylate-co-poly (vinylene carbonate) and PVDF-HFP.
- c. Boron nitride (BN).
- d. Cross-linked GPE based on poly (ethylene glycol) diglycidyl ether (PEGDE), diglycidyl ether of bisphenol-A (DEBA), and diamino-poly (propylene oxide) (DPPO).
- e. Di(2-methylacryloyltrioxyethyl) methyl phosphonate (MATEMP)
- f. Cross-linked poly(ethylene glycol) diglycidyl ether (PEGDE) and diamino-poly (propylene oxide) (DPPO) in the network of glass fiber (GF) membrane
- g. Di(2-methacryloyltrioxyethyl)phenylphosphonate (MATEPP)
- h. C.R.: Capacity retention

References:

- 1. Y. Zhu, S. Xiao, Y. Shi, Y. Yang, Y. Hou and Y. Wu, 2014, 4, 1300647.
- 2. Z. Du, Y. Su, Y. Qu, L. Zhao, X. Jia, Y. Mo, F. Yu, J. Du and Y. Chen, *Electrochimica Acta*, 2019, **299**, 19-26.
- 3. Q. Lu, J. Yang, W. Lu, J. Wang and Y. Nuli, *Electrochimica Acta*, 2015, **152**, 489-495.
- 4. X. Bian, J. Liang, X. Tang, R. Li, L. Kang, A. Su, X. Su and Y. Wei, *Journal of Alloys and Compounds*, 2019, **803**, 1075-1081.
- Q. Lu, Y.-B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang and Q.-H. Yang, 2017, 29, 1604460.
- X. Shi, Q. Sun, B. Boateng, Y. Niu, Y. Han, W. Lv and W. He, *Journal of Power Sources*, 2019, 414, 225-232.
- Y. F. Liang, S. J. Deng, Y. Xia, X. L. Wang, X. H. Xia, J. B. Wu, C. D. Gu and J. P. Tu, *Materials Research Bulletin*, 2018, **102**, 412-417.
- 8. J. Shi, H. Xiong, Y. Yang and H. Shao, *Solid State Ionics*, 2018, **326**, 136-144.
- J. Zheng, X. Liu, Y. Duan, L. Chen, X. Zhang, X. Feng, W. Chen and Y. Zhao, *Journal of Membrane Science*, 2019, 583, 163-170.
- 10. D. T. Vo, H. N. Do, T. T. Nguyen, T. T. H. Nguyen, V. M. Tran, S. Okada and M. L. P. Le, *Materials Science and Engineering: B*, 2019, **241**, 27-35.
- 11. Q. Yu, Q. Lu, X. Qi, S. Zhao, Y.-B. He, L. Liu, J. Li, D. Zhou, Y.-S. Hu, Q.-H. Yang, F. Kang and B. Li, *Energy Storage Materials*, 2019, DOI: https://doi.org/10.1016/j.ensm.2019.03.011.
- 12. J. Zheng, Y. Zhao, X. Feng, W. Chen and Y. Zhao, *Journal of Materials Chemistry A*, 2018, 6, 6559-6564.