Supporting Information

MOF-derived C@NiO@Ni electrocatalyst for N₂ conversion to NH₃ in alkaline electrolytes

Shijian Luo, Xiaoman Li*, Wanguo Gao, Haiqiang Zhang and

Min Luo*

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, P.R.China

> *Corresponding author: Min Luo martinluomin@163.com, Xiaoman Li lixm2017@nxu.edu.cn

Content

TG curves and XRD pattern of Ni-MOF	Fig. S1
XPS spectra of C@NiO@Ni etching 10 nm	Fig. S2
XPS spectra of C@NiO@Ni	
XPS spectra of C@NiO	Fig. S4
SEM image of Ni-MOF	Fig. S5
SEM, TEM, HRTEM images of C@Ni	Fig. S6
SEM, TEM, HRTEM images of C@NiO	Fig. S7
EDX data	Fig. S8
UV-Vis absorption spectra and Calibration curve	Fig. S9
UV-Vis absorption spectra of catalyst at different potentials	Fig. S10
Chronoamperometry results	Fig. S11
XRD and Raman pattern of carbon	Fig. S12
NRR performance in different electrolytes	Fig. S13
Controlling experiments in Ar	Fig.
S14	
NRR performance using different feeding gases	Fig. S15
UV-Vis absorption spectra and Calibration curve	Fig. S16
N ₂ H ₄ detection	Fig. S17
NRR performance of Ni-MOF and carbon paper	Fig. S18
XRD and SEM of C@NiO@Ni after 24 h NRR	Fig. S19
Arrhenius plot and NRR performance in air	Fig. S20
EIS plots	Fig. S21
Comparison of NRR performance under ambient conditions	Table S1

Fig. S1. (a) Thermogravimetric curve of Ni-MOF (Ni-BTC) in Air and N_2 . (b) XRD pattern of Ni-MOF (Ni-BTC).

Fig. S2. The Ni $2p_{3/2}$ XPS pattern using Ar particles to etch C@NiO@Ni for 10 nm.

Fig. S3. XPS C 1s spectra for the C@NiO@Ni.

Fig. S4. XPS Ni $2p_{3/2}$ (a) and O 1s (b) spectra for the C@NiO.

Fig. S5. SEM image of Ni-MOF (Ni-BTC) precursor.

Fig. S6. (a) SEM image, (b) TEM image and (c) HRTEM image of C@Ni microtubes.

Fig. S7. (a) SEM image, (b) TEM image and (c) HRTEM image of C@NiO microtubes.

Fig. S8. (a) EDX of C@Ni. (b) EDX of C@NiO@Ni. (c) EDX of C@NiO.

Fig. S9. (a) UV-Vis absorption curves of Nessler's reagent assays kept with different concentrations of NH_4^+ ions. (b) A calibration curve used to estimate the concentrations of NH_4^+ ions.

Fig. S10. UV-Vis absorption curves of the electrolyte after tests of C@NiO@Ni at different potentials.

Fig. S11. Chronoamperometry results of C@NiO@Ni at the corresponding potentials.

Fig. S12. (a) XRD pattern of carbon (etching NiO and Ni of C@NiO@Ni by HNO₃). (b) Raman pattern of carbon (etching NiO and Ni of C@NiO@Ni by HNO₃).

Fig. S13. NRR performance of C@NiO@Ni in different electrolytes at -0.7 V.

Fig. S14. NH_3 yields and FEs of C@NiO@Ni with alternating 1 h cycles between Ar atmosphere and N_2 atmosphere, for a total of 4 hours.

Fig. S15. Comparison of the Faradaic efficiency and NH₃ yield of C@NiO@Ni using different feeding gases for the NRR at -0.7 V.

Fig. S16. (a) UV-Vis curves of various concentrations of N_2H_4 stained with p-C₉H₁₁NO indicator. (b) A calibration curve used to estimate the concentrations of N_2H_4 .

Fig. S17. UV-Vis absorption spectra of the electrolytes stained with $p-C_9H_{11}NO$ indicator after NRR electrolysis at different time.

Fig. S18. Ammonia concentration and FE of C@NiO@Ni/CP, Ni-MOF/CP and CP after 1 h electrolysis at a potential of -0.7 V under ambient conditions.

Fig. S19. (a) XRD pattern, (b) SEM image of C@NiO@Ni after 24 h NRR.

Fig. S20. (a) Arrhenius plot of the NRR rate over C@NiO@Ni catalyst at the temperature from 273 to 353 K. (b) NH₃ yields and FE for C@NiO@Ni at different potentials in Air.

Fig. S21. EIS plots of C@Ni, C@NiO@Ni, C@Ni and commercial Ni in 0.1 M KOH.

Catalyst	Electrolyte	NH ₃ yield	FE (%)	Ref
C@NiO@Ni	0.1 M KOH	43.15 μ g h ⁻¹ mg ⁻¹ _{cat.}	10.9	This work
Cr-doped CeO ₂	0.1 M Na ₂ SO ₄	16.82µg h ⁻¹ mg ⁻¹	3.84	1
Bi ₂ MoO ₆	0.1 M HCl	$20.46 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	8.17	2
Co ₃ O ₄ @NC	0.05M H ₂ SO ₄	42.58 μ g h ⁻¹ mg ⁻¹ _{cat.}	8.49	3
Fe ₂ O ₃ -CNT	KHCO ₃	$0.22 \ \mu g \ h^{-1} \ cm^{-2}$	0.15	4
TA-reduced Au/TiO ₂	0.1 M HCl	21.4 μ g h ⁻¹ mg ⁻¹ _{cat.}	8.11	5
Au nanorods	0.1 M KOH	$1.6 \ \mu g \ h^{-1} \ cm^{-2}$	3.88	6
α-Au/CeO _x -RGO	0.1 M HCl	8.31 $\mu g h^{-1} m g^{-1}{}_{cat.}$	10.1	7
Rh nanosheet nanoassemblies	0.1 M KOH	23.88 $\mu g h^{-1} m g^{-1}_{cat.}$	0.22	8
Pd/C	0.1 M PBS	4.5 μ g h ⁻¹ mg ⁻¹ cat.	8.2	9
Ru/C	2 М КОН	$0.21 \ \mu g \ h^{-1} \ cm^{-2}$	0.28	10
AuHNCs	0.5 M LiClO ₄	$3.90 \ \mu g \ h^{-1} \ cm^{-2}$	30.2	11
γ-Fe ₂ O ₃ nanoparticles	0.1 M KOH	$0.212 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	1.9	12
Fe ₃ O ₄ /Ti	0.1 M Na ₂ SO ₄	$5.6 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	2.6	13
N-doped porous carbon	0.05 M H ₂ SO ₄	23.8 μ g h ⁻¹ mg ⁻¹ _{cat.}	1.42	14
PCN-NV4	0.1 M HCl	$8.09 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	11.59	15
N-doped carbon nanospikes	0.25 M LiClO ₄	97.18 μg h ⁻¹ cm ⁻²	11.56	16
Bi ₄ V ₂ O ₁₁ /CeO ₂	0.1 M HCl	23.21 $\mu g h^{-1} m g^{-1} cat.$	10.16	17

Table S1. Comparison of the electrocatalytic activity of C@NiO@Ni to produce NH₃ through NRR with respect to the performances of other previously reported NRR electrocatalysts.

Mo nanofilm	0.01 M H ₂ SO ₄	$1.89 \ \mu g \ h^{-1} \ cm^{-2}$	0.72	18
MoS ₂ /CC	0.1 M Na ₂ SO ₄	4.94 μ g h ⁻¹ cm ⁻²	1.17	19
MoO ₃	0.1 M HCl	$29.43 \mu g h^{-1} m g^{-1}{}_{cat.}$	1.9	20
Mo ₂ N	0.1 M HCl	78.4 μ g h ⁻¹ mg ⁻¹ _{cat.}	4.5	21
MoN	0.1 M HCl	$3.01 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$	1.15	22
Nb ₂ O ₅ nanofiber	0.1 M HCl	43. 5 μ g h ⁻¹ mg ⁻¹ _{cat.}	9.26	23
hollow Cr ₂ O ₃ microspheres	0.1 M Na ₂ SO ₄	25. 3 μ g h ⁻¹ mg ⁻¹ _{cat.}	6.78	24
Mn ₃ O ₄	0.1 M Na ₂ SO ₄	11. 6 μ g h ⁻¹ mg ⁻¹ _{cat.}	3.0	25
MoS ₂ Nanoflower	0.1 M Na ₂ SO ₄	29. 3 μ g h ⁻¹ mg ⁻¹ _{cat.}	8.34	26
SnO ₂ /CC	0.1 M Na ₂ SO ₄	1.47×10^{-10}	2.17	27
		mol s ⁻¹ cm ⁻²		
b-FeOOH nanorods	0.5 M LiClO ₄	23. 3 μ g h ⁻¹ mg ⁻¹ _{cat.}	6.7	28
TiO ₂ –rGO	0.1 M Na ₂ SO ₄	15. 1 μ g h ⁻¹ mg ⁻¹ _{cat.}	3.3	29
B ₄ C	0.1 M HCl	26. 6 μ g h ⁻¹ mg ⁻¹ _{cat.}	16.0	30

References

- 1 H. Xie, H. Wang, Q. Geng, Z. Xing, W. Wang, J. Chen, L. Ji, L. Chang, Z. Wang and J. Mao, *Inorg. Chem.*, 2019, **58**, 5423-5427.
- 2 Z. Xing, W. Kong, T. Wu, H. Xie, T. Wang, Y. Luo, X. Shi, A. M. Asiri, Y. Zhang and X. Sun, *ACS Sustain. Chem. Eng.*, 2019, DOI: 10.1021/acssuschemeng.9b03141.
- 3 S. Luo, X. Li, B. Zhang, Z. Luo and M. Luo, ACS Appl. Mater. Inter., 2019, 11, 26891-26897.
- 4 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *Angew. Chem., Int. Ed.*, 2017, **129**, 2743-2747.
- 5 M. M. Shi, D. Bao, B. R. Wulan, Y. H. Li, Y. F. Zhang, J. M. Yan and Q. Jiang, *Adv. Mater.*, 2017, **29**, 1606500.
- 6 D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang and X.-B. Zhang, *Adv. Mater.*, 2017, **29**, 1604799.
- 7 S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan and Q. Jiang, *Adv. Mater.*, 2017, **29**, 1700001.
- 8 X. Y. Cui, C. Tang, X. M. Liu, C. Wang, W. J. Ma and Q. Zhang, *Chem.-Eur. J.*, 2018, **24**, 18494-18501.
- 9 J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, Nat. Commun., 2018, 9, 1795.
- 10 V. Kordali, G. Kyriacou and C. Lambrou, Chem. Commun., 2000, 17, 1673-1674.
- 11 M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, Nano Energy, 2018, 49, 316-323.
- 12 J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi and H. S. Park, *ACS Sustain. Chem. Eng.*, 2017, **5**, 10986-10995.
- 13 Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, *Nanoscale*, 2018, **10**, 14386-14389.
- 14 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, *ACS Catal.*, 2018, **8**, 1186-1191.
- 15 C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen and G. Yu, *Angew. Chem., Int. Ed.*, 2018, 57, 10246-10250.
- Y. Song, D. Johnson, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, J. Huang, F. Yang,
 F. Zhang, R. Qiao, A. P. Baddorf, T. J. Tschaplinski, N. L. Engle, M. C. Hatzell, Z. Wu, D. A.
 Cullen, H. M. Meyer, B. G. Sumpter and A. J. Rondinone, *Sci. Adv.*, 2018, 4, e1700336.
- 17 C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, *Angew. Chem., Int. Ed.*, 2018, **57**, 6073-6076.
- 18 D. Yang, T. Chen and Z. Wang, J. Mater. Chem. A, 2017, 5, 18967-18971.
- 19 L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- 20 J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, *J. Mater. Chem. A*, 2018, **6**, 12974-12977.
- 21 X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, *Chem. Commun.*, 2018, 54, 8474-8477.

22 L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, *ACS Sustain*. *Chem. Eng.*, 2018, **6**, 9550-9554.

23 J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, *Nano Energy*, 2018, **52**, 264-270.

24 Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li and X. Sun, *ACS Catal.*, 2018, **8**, 8540-8544.

25 X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi and X. Sun, Small, 2018, 14, e1803111.

26 X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Energy. Mater.*, 2018, **8**, 1801357.

27 L. Zhang, X. Ren, Y. Luo, X. Shi, A. M. Asiri, T. Li and X. Sun, *Chem. Commun.*, 2018, **54**, 12966-12969.

28 X. Zhu, Z. Liu, Q. Liu, Y. Luo, X. Shi, A. M. Asiri, Y. Wu and X. Sun, *Chem. Commun.*, 2018, **54**, 11332-11335.

29 X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun and T. Li, *J. Mater. Chem. A*, 2018, **6**, 17303-17306.

30 W. Qiu, X. Y. Xie, J. Qiu, W. H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang and X. Sun, *Nat. Commun.*, 2018, **9**, 3485.