Supplementary Information:

Noble metal free hierarchical VS_2 onto WO_3 nanoflakes as an effective hetero junction strategy for enhanced photoelectrochemical water oxidation

Ching Thian Moi,^a Gaurangi Gogoi,^a Tushar Kanta Sahu,^a Devipriya Gogoi,^b Nageswara Rao

Peela^b and Mohammad Qureshi*a

^aDepartment of Chemistry, Indian Institute of Technology, Guwahati – 781039, Assam, India.

*E-mail: mq@iitg.ac.in; Fax: +91 361 2582349; Tel: +91 361 2582320

^bDepartment of Chemical Engineering, Indian Institute of Technology, Guwahati - 781039,

Assam, India.

Fig. S1 (A) UV-Vis absorption spectra and (B) Fourier transforms infrared (FTIR) spectra of WO₃, VS₂ and WO₃-VS₂ composites.

Fourier transforms infrared (FTIR) spectra was obtained to characterize the surface functional groups in Fig. S1 (B). Monoclinic WO_3 exhibited three distinct peaks at the

wavelengths of 1622, 1405, and 804 cm⁻¹, which correspond to W-OH bending vibration mode as a result of adsorbed water molecules, W-O stretching vibration and O-W-O stretching mode respectively.¹ The broad absorption bands at 3450 cm⁻¹ was associated with weakly bound surface hydroxyl from ethanol/water. VS₂ shows characteristic band centered at 986 cm⁻¹ in the low-frequency region, which can be assigned to v (V=S) terminal S stretches.² In WO₃-VS₂, the corresponding terminal S stretch of VS₂ was observed at 1020 cm⁻¹ which is slightly blue shifted compared to VS₂, which implies an interaction between the components in the composite.

Fig. S2 Nyquist plots of WO₃ and WO₃-VS₂ photoanode under light illumination in 0.1MNa₂SO₄

Fig. S3. (A) and (B) are FESEM image, (C) XRD and (D) Raman spectra of WO_3 -VS₂ composite before and after the PEC measurement.

The solar-to-hydrogen (STH) efficiency was calculated from the following formula.^{3,4}

$$STH = \frac{J_{SC}\left(\frac{mA}{cm^2}\right) \times 1.23 V \times \eta_F}{P_{total}(mW/cm^2)}$$

Charge separation efficiency is calculated by using the following equation.⁵

$$\eta_{sep} = J_{sca} / J_{abs}$$

Where J_{abs} is the theoretical photo current density, J_{sca} is the photocurrent of the photoanode in the presence of scavengers as a function of applied bias.

	R _s	C _{bulk}	R _{trap} (bulk)	R _{ct} trap	C trap
WO ₃ Dark	61.29	1.02 x10 ⁻⁵	7.71 x10 ⁵	2.5 x10 ⁴	7.32 x10 ⁻⁶
WO ₃ Light	65.71	1.02 x10 ⁻⁵	1.87 x10 ⁴	1.79 x10 ⁴	3.55 x10 ⁻⁵
WO ₃ -VS ₂ Dark	32.36	1.15 x10 ⁻⁵	2.79 x10 ³	9073	2.34 x10 ⁻⁵
WO ₃ -VS ₂ Light	32.44	1.20 x10 ⁻⁵	1.97 x10 ³	5504	3.25 x10 ⁻⁵

Table S1: Tabulation of fitted parameters of Nyquist plot at open circuit potential.

References

- 1. J. Wang, Z. Chen, G. Zhai and Y. Men, Appl. Surf. Sci. 2018, 462, 760.
- 2. B. Pandit, L. K. Bommineedi and B. R. Sankapal, J. Energy Chem., 2018, 0, 1.
- B. Pinaud, J. D. Benck , L. C. Seitz, A. J. Forman, Z. B. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. L. Wang, E. Miller and T. F. Jaramillo, *Energy Environ. Sci.*, 2013, 6, 1983.
- 4. Z. Chen, H. Dinh and E. Miller, Photoelectrochemical Water Splitting, Springer, 2013.
- 5. T. K. Sahu, A. K. Shah, A. Banik, M. Qureshi, ACS Appl. Energy Mater. 2019, 2, 4325.