Supplementary Information

Application of Sn⁴⁺ doped In₂S₃ thin film to CIGS solar cell as a buffer layer

SeongYeon Kim^a, Md. Salahuddin Mina^a, Kiwhan Kim^b, Jihye Gwak^b, JunHo Kim^{a*}

^aDepartment of Physics, Incheon National University, Incheon 22012, Republic of Korea
^bPhotovoltaics Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea

*Corresponding author: jhk@inu.ac.kr

Fig. S1. (a) Transmission graph and (b) extracted band gaps for pure and Sn⁴⁺ doped In₂S₃ film.

Fig. S2. Cross-sectional FE-SEM images of CIGS solar cells with (a) pure In_2S_3 buffer, (b) Sn^{4+} 3% doped In_2S_3 buffer and (c) Sn^{4+} 5% doped In_2S_3 buffer.

Fig. S3. (a) Steady-state PL results and (b) time-resolved PL results for CIGS solar cells with pure In_2S_3 buffer, Sn^{4+} doped In_2S_3 buffers and Sn^{2+} doped In_2S_3 buffer.

Fig. S4. EQE comparison of CIGS solar cells with pure In_2S_3 buffer, Sn^{4+} 3% doped buffer and Sn^{2+} 1% doped buffer.