Supporting information

Efficient cosensitization of new organic dyes containing bipyridine anchors with porphyrin for dye-sensitized solar cells

Hai-Lang Jia,* Shan-Shan Li, Bing-Quan Gong, Lei Gu, Zheng-Lv Bao and Ming-Yun Guan

School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China.

Synthesis of the dyes

Scheme S1 synthesis procedure of S3 and S4. Reagents and conditions: a) bis(pinacolato)diboron, Pd(dppf)Cl₂, KOAc, DMF, 80°C; c) AcOH, 120°C; d) Pd(PPh₃)₄, K₂CO₃, H₂O, THF, 90°C; e) Pd(PPh₃)₄, K₂CO₃, H₂O, THF, 90°C.

Synthesis of compound 2

A mixture of compound 1 (5.00 g, 12.80 mmol), bis(pinacolato)diboron (4.88 g, 19.20 mmol) and KOAc (3.78 g, 38.40 mmol) in DMF (80 mL) was added Pd(dppf)Cl₂ (0.60 g) under dinitrogen. The mixture was heated under 80°C for overnight. The reaction mixture was cooled to room temperature and H₂O (250 mL) was added, the mixture was extracted by EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography (PE/EA=10/1) to give the compound 2 (4.27 g, 76%). ¹H NMR (CDCl₃, 500 MHz) $\delta_{\rm H}$ 7.62-7.65 (m, 2H), 7.14-7.18 (m, 2H), 6.94 (t, *J*=7.5Hz, 1H), 6.87 (d, *J*=8.0Hz, 2H), 3.88 (t, *J*=7.0Hz, 2H), 1.80-1.86 (m, 2H), 1.43-1.47 (m, 2H), 1.24-1.37 (m, 20H), 0.93 (t, *J*=6.5Hz, 3H).

Synthesis of compound 4

The preparation method was the same as that of compound 2. $\delta_{\rm H}$ ¹H NMR (CDCl₃, 400 MHz) 8.60 (s, 1H), 8.12 (d, *J*=7.6Hz, 1H), 7.91 (d, *J*=8.0Hz, 1H), 7.43-7.47 (m, 1H), 7.38 (d, *J*=8.4Hz, 2H), 7.21-7.25 (m, 1H), 4.27 (t, *J*=7.2Hz, 2H), 1.83-1.87 (m, 2H), 1.40 (s, 12H), 1.25-1.34 (m, 10H), 0.84 (t, *J*=6.8Hz, 3H).

Synthesis of compound 5

Under the protection of nitrogen, 4, 5-dibromo-1,2-phenylenediamine,4 (1 g, 3.76 mmol) and 1,10-phenanthroline-5,6-dione (0.79 g, 3.76 mmol) were added to glacial acetic acid (30 mL). Then the reaction solution was heated to 120°C for overnight, then cooled to room temperature, added a large amount of ice water and precipitated out. After filtration, water and ethanol were used to wash the filter cake. 1.38 g of compound 5 was obtained after drying, and the yield was 84%. Anal. calcd for $[C_{18}H_8Br_2N_4]$ (%): C, 49.12; H, 1.83; N, 12.73. Found (%): C, 49.41; H, 2.22; N, 12.47. MS (ESI) $[M]^+$: calcd for $C_{18}H_8Br_2N_4$, 440.10; found, 440.25.

Synthesis of compound S3

Compound 5 (0.5 g, 1.14 mmol), compound 2 (1.49 g, 3.41 mmol), potassium carbonate (0.63 g, 4.54 mmol) were added to THF (30 mL) and water (5 mL).

Pd(PPh₃)₄ (50 mg) was added under nitrogen protection. The mixture was heated to 90°C for 12 hours, then the reaction stopped and cooled to room temperature. Then the solvent was removed by rotary evaporation, and the residue was purified by column chromatography (DCM/PE=6/1) to obtain 0.73 g red S3 with a yield of 72%. ¹H NMR (CDCl₃, 400 MHz), $\delta_{\rm H}$ 9.56 (d, *J*=8.0Hz, 2H), 9.28-9.29 (m, 2H), 8.25 (s, 2H), 7.78-7.81 (m, 2H), 7.30-7.31 (m, 2H), 7.11-7.19 (m, 4H), 6.92-6.94 (m, 4H), 6.85 (d, *J*=8.0Hz, 2H), 6.71 (d, *J*=8.0Hz, 2H), 3.81 (t, *J*=6.8Hz, 4H), 1.77-1.84 (m, 4H), 1.40-1.43 (m, 4H), 1.25-1.28 (m, 16H), 0.87 (t, *J*=6.8Hz, 6H). HRMS (ESI, m/z): [M+H]⁺. Calcd for C₅₈H₅₆N₆S₂: 901.2480. Found: 901.4068.

Synthesis of compound S4

The preparation method was the same as that of S4. $\delta_{\rm H}$ ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 9.59 (d, *J*=8.0Hz, 2H), 9.25-9.26 (m, 2H), 8.57 (s, 2H), 8.28 (s, 2H), 7.95 (d, *J*=7.6Hz, 2H), 7.73-7.77 (m, 2H), 7.41-7.45 (m, 2H), 7.35 (d, *J*=8.0Hz, 2H), 7.25-7.27 (m, 2H), 7.17-7.19 (m, 2H), 7.12-7.15 (m, 2H), 4.20 (t, *J*=7.2Hz, 4H), 1.77-1.84 (m, 4H), 1.21-1.33 (m, 20H), 0.85 (t, *J*=7.2Hz, 6H). HRMS (ESI, m/z): [M-C₂H₅+H]⁺. Calcd for C₅₆H₅₁N₆: 808.0660. Found: 809.2544.

Dye	$a\lambda_{max}/nm (\epsilon \times 10^4 \mathrm{M}^{-1} \mathrm{cm}^{-1})$	^b E _{OX} /V	^c E ₀₋₀ /eV	$^{d}\mathrm{E*}_{\mathrm{OX}}/\mathrm{V}$
		(NHE)		(NHE)
S3	456 (1.49)	0.94	2.37	-1.43
S4	440 (1.46)	0.96	2.40	-1.44

Table S1 Optical and electrochemical properties of dyes

^{*a*}Absorption maximum in DCM solution (1×10⁻⁵ M), ^{*b*}the ground state oxidation potentials, ^{*c*}E₀₋₀ was estimated from the intersection of emission and absorption spectra, ^{*d*}E^{*}_{OX} was calculated by the formula: $E^*_{OX} = E_{OX}-E_{0-0}$.

Table S2 Photovoltaic parameters of the DSSCs obtained from the J-V curves

Dye	Rs	Rsh (Ω	Jsc (mA cm ⁻²)	Voc	FF (%)	η (%)
	(Ω	cm ⁻²)		(mV)		
	cm ⁻²)					
^a S3	98	20444	8.25±0.17	723±1.33	68.00 ± 0.28	4.06 ± 0.08
^a S4	74	38989	6.46±0.15	686±1.33	73.02±0.12	3.23±0.07
^b JA3	59	20577	12.23±0.06	801±1.00	63.55±0.17	6.23±0.01
^a JA3+S3	77	12242	15.46±0.06	821±0.67	64.55±0.17	8.20±0.01
^a JA3+S4	64	17925	13.08 ± 0.02	819±0.67	66.12±1.35	$7.20{\pm}0.01$

^aThe size of the active area for each cell is 0.196 cm², three devices are assembled in parallel with each dye, the DSSCs were all measured under standard global AM 1.5G solar irradiation. ^bThe DSSC based on JA3 was reported in ref. 30.

Table S3 Parameters obtained by fitting the EIS of the DSSCs with JA3, JA3+S3, and JA3+S4 using the equivalent circuit

Dye	Rs (Ω cm ⁻²)	$R_{Pt} (\Omega \text{ cm}^{-2})$	$R_{ct}(\Omega \text{ cm}^{-2})$
JA3	36.21	16.13	117
JA3+S3	42.60	23.47	596
JA3+S4	39.32	22.10	568

Fig. S1 Cyclic voltammogram of **S3** and **S4** in DCM, 0.1 M TBAPF₆, glassy carbon electrode as working electrode, Pt as counter electrode, Ag/Ag⁺ as reference electrode, scan rate: 100 mV s⁻¹, calibrated with ferrocene/ferrocenium (Fc/Fc⁺) as an external reference.

Fig. S2 Differential pulse voltammetry (DPV) of S3 in DCM, 0.1 M TBAPF₆, glassy carbon electrode as working electrode, Pt as counter electrode, Ag/Ag^+ as reference electrode.

Fig. S3 Differential pulse voltammetry (DPV) of **S4** in DCM, 0.1 M TBAPF₆, glassy carbon electrode as working electrode, Pt as counter electrode, Ag/Ag^+ as reference electrode.

Fig. S4 The normalized absorption and normalized emission spectra of S3 and S4, and the zero-zero excitation energy (E_{0-0}) can be estimated by the intersection of emission and absorption.

Fig. S5 The Bode Phase of DSSCs

Fig. S6 ¹H NMR of S3

Fig. S8 HRMS of S3

Fig. S9 HRMS of S4