Supporting Information

Developing a novel high performance NaNbO$_3$-based lead-free dielectric capacitor for energy storage application

Mingxing Zhou,a,b Ruihong Liang,*,a,b Zhiyong Zhou,a,b and Xianlin Dong*,a,b,c

a Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, P. R. China.

E-mail: liangruihong@mail.sic.ac.cn and xldong@mail.sic.ac.cn

b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

c State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
In order to investigate the relaxor behavior for xBBKT-NN ceramics, the modified Curie-Weiss equation is given as follow:

$$\frac{1}{\varepsilon_r} - \frac{1}{\varepsilon_m} = \frac{(T - T_m)^\gamma}{C}$$ \hspace{1cm} (S1)

where γ is the diffuseness of a transition. The value of $\gamma = 1$ indicates a normal ferroelectric with a sharp phase transition, and it representing an typical relaxor transition with large deviation from the Curie-Weiss law when $\gamma = 2$. The plot of $\ln(1/\varepsilon_r - 1/\varepsilon_{\text{max}})$ as a function of $\ln(T - T_{\text{max}})$ for xBBKT-NN ceramics at 100 kHz is displayed in Fig. S2 by linear fitting with modified Curie-Weiss equation to calculate the γ value. The data about 100 kHz were chose here to minimize any space charge contribution to the dielectric constant. The values of γ are 2.06, 2.02, 1.92, and 1.83 for $x = 0.26, 0.28, 0.30, \text{ and } 0.32$, respectively, which indicates strong relaxation behavior in xBBKT-NN ceramics.
To obtain the Burns temperature (T_B, the transition temperature at which polar nano-regions appear), the temperature dependence of dielectric constant are fitted by the Curie-Weiss law:

$$\varepsilon_r = \frac{C}{T - T_{CW}}$$

where C and T_{CW} are the Curie constant and Curie-Weiss temperature. The T_B value is determined as the temperature at which the reciprocal dielectric constant deviates from the Curie-Weiss relation on cooling. The data also measured at 100 kHz were used to eliminate the possible space charge effect. For the compositions with $x = 0.26$-0.32, the values of are in the range 202-158 °C. The relatively high T_B values indicate that the xBBKT-NN ceramics belong to relaxor ferroelectric state at room temperature.
Fig. S3 1000/\(T\) versus temperature curves of the \(x\)BBKT-NN ceramics. The experimental data were fitting by Curie-Weiss law (red lines).

Fig. S4 The evolution of polar nano-regions under a bias field for the (a) weak relaxor ferroelectric and (b) strong relaxor ferroelectric (weakly coupled).\(^2\)
Fig. S5 Electric filed dependences of P_{max}, P_r, and ΔP for the xBBKT NN ceramics: (a) $x = 0.26$, (b) $x = 0.28$, (c) $x = 0.30$, and (d) $x = 0.32$.

References