Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Carbon Capsule Confined Sb₂Se₃ for Fast Na⁺ Extraction in Sodium-ion

Batteries

Ling Guo,¹ Liyun Cao,^{*1} Jianfeng Huang,^{1,2} Jiayin Li,^{*1,2} Shaoyi Chen²

¹ School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China

² DINGXIN CELLS CO., LTD. Nantong, 226600, P.R.China

Corresponding authors: Prof. Liyun. Cao and Jiayin. Li

E-mail: 2644245930@qq.com; lijiayin@sust.edu.cn

Fig. S1 XPS spectra of C1s core level of SSC.

Fig. S2 The XRD pattern, SEM and TEM of C (carbon capsule).

The capsule-like carbon shell was obtained by treating SSC with a 3.0 M NaOH solution for 3 h to remove Sb₂Se₃. The XRD pattern of C was shown in Figure S2a, it is found that all the diffraction peaks of Sb₂Se₃ are disappeared except for a tiny peak at $2\theta \approx 26^{\circ}$ corresponding to carbon, indicating that pure carbon capsule have been successfully obtained. The morphology and microstructure of C was explored by SEM andTEM. As shown in Figure S2b, 2c, the C exhibits hollow structure with thickness about 20 nm, indicating that Sb₂Se₃ nanorods is confined in carbon capsule with thickness about 20 nm.

Fig. S3 The initial charge/discharge profiles of SS and SSC electrodes under 2 A g⁻¹.

Fig. S4 The charge/discharge profiles of SS electrodes at different current rates.

Fig. S5 The charge/discharge profiles of C (carbon capsule) electrode at different current rates.

g. S6 The cyclic voltammograms of the SS electrodes at different scan rates (a); the diffusion contribution shown

by the shaded region at 0.3 mV s⁻¹ for SS (b).

Randles-Sevciik equation as follows:

T

 $I_p = (2.69 \times 10^5) n^{3/2} AD^{1/2} Cv^{1/2}$ Where n is for the number of transfer electrons, A represents the

anode area (cm²), D stands for Na⁺ diffusion coefficient, C is the shuttle concentration (mol cm⁻³),

and v is for the scan rate (V s^{-1}).

$$D_{Na^{+}} = \left(\frac{I_{P}}{v^{1/2}} \times \frac{1}{(2.69 \times 10^{5})n^{3/2}AC}\right)^{2}$$

For SS electrode: $\frac{I_{P}}{v^{1/2}} = 0.64$
$$C = \frac{n}{A \times h} = \frac{n/M}{A \times h} = \frac{(0.7175 \times 70\% \times 10^{-3})g/480.48 \text{ g moL}^{-1}}{0.785 \times 14 \times 10^{-4} \text{ cm}^{3}} = 9.509 \times 10^{-4}$$

Therefrore, the sodium-ion diffusion coefficient $\binom{D_{Na^+}}{}$ of SS is about 5.04 × 10⁻⁹ cm² s⁻¹.

For SSC electrode:
$$\frac{n^{1/2}}{v^{1/2}} = 0.72$$

$$C = \frac{n}{A \times h} = \frac{n/M}{A \times h} = \frac{(0.7175 \times 70\% \times 80\% \times 10^{-3})g/480.48g \text{ moL}^{-1}}{0.785 \times 14 \times 10^{-4} \text{ cm}^3} = 7.60 \times 10^{-4}$$

Therefrore, the sodium-ion diffusion coefficient $\binom{D_{Na^+}}{Na^+}$ of SSC is about 1.29×10^{-8} cm² s⁻¹.

$$i(\mathbf{V}) = k_1 \upsilon + k_2 \upsilon^{1/2}$$

Based on the above equation, the total current response (i) at a fixed potential (V) can be divided

into two parts including capacitive $k_1 v$ and diffusion-controlled $k_2 v^{1/2}$.

Fig. S7 The cycling performance of SS, SSC and C at a current density of 0.2 A g^{-1} .

Fig S8. The electrochemical impedance spectroscopy (EIS) of SS and SSC electrodes charge to 0.75 V at 5th (a), 50th (b) and 100th (c), (d) the Z' versus $\omega^{-1/2}$ in the low frequency regions of and fitting liner of SS and SSC, (e)

the corresponding equivalent circuit model for the impedance in (a, b, c) and the σ value of fitting liners in (d).