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Experimental

Chemicals

Ferrous sulfate heptahydrate (FeSO4·7H2O, 99.0%) and selenium dioxide (SeO2, 

99.0%) were purchased from Shanghai Macklin Biochemical Technology Co. Ltd. 

Hydrochloric acid (HCl, 36.0%) was obtained from Hangzhou Shuang Lin chemical 

Co. Ltd. Potassium hydroxide (KOH, 85.0%) was obtained from Hangzhou Xiao Shan 

chemical reagent factory. Ethanol (CH3CH2OH, 99.7%) was purchased from Anhui An 

Te biochemistry company. All chemical reagents were used as received without further 

purification. Deionized (DI) water was used in all experiments.

Ni foam (NF, thickness: 1.5 mm, bulk density: 0.28 g cm-3; number of pores per inch: 
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110) was purchased from Kunshan JiaYiSheng electronics. Co. Ltd. Before test, NF 

was immersed into 3.0 M HCl for 10 min, then washed with a plenty of running water 

and rinsed with DI water in an ultrasonic bath for 5 min, finally washed with ethanol 

for several times and blow-dried. 

Fabrication of NiFeSe@NF

Typically, different amounts of FeSO4·7H2O (5, 10 mM) and SeO2 (5, 10, 15 mM) 

were dissolved into 50 mL DI water. Then the obtained solution was transferred into a 

100 mL Teflon-lined stainless steel autoclave and a piece of NF (1.0 cm × 2.5 cm) was 

added into the autoclave. Then the autoclave was maintained at 120 °C for 12 h, and 

cooled down to room temperature with the furnace. Finally, the specimen was removed 

out and rinsed thoroughly with DI water, ethanol and dried by warm air. Specimen 

labelled as NiFe10Se10@NF indicated that during the hydrothermal process, the 

amounts of FeSO4·7H2O and SeO2 in the solution were both 10 mM.

Fabrication of Pt/C

In detail, 5.0 mg Pt/C powder was mixed with 200 μL isopropanol, 32 μL Nafion and 

768 μL DI water ( total 1 mL). After evenly dispersed by ultrasound, 200 μL suspension 

was dropped on a piece of NF (1.0 cm × 2.5 cm). The mass of the loaded active 

materials was about 1.0 mg cm-2.

Physical-chemical Characterization

X-ray diffraction (XRD) patterns of the synthesized materials were recorded on a 

RIGAKU D/Max 2550 PC diffractometer equipped with Cu Kα radiation (λ=1.54059 

Å) at 40 kV and 30 mA. The morphology and composition of the electrodes were 
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characterized by field emission scan electron microscopy (FE-SEM, Carl Zeiss Supra 

55, operated at 15 kV) equipped with energy dispersive X-ray spectra (EDS) 

microanalysis (Oxford EDS Inca Energy Coater 300) and atomic force microscopy 

(AFM, Bruker Dismension Icon 3 atomic force micro-scope). The transmission electron 

microscopy (TEM) and high-resolution TEM (HR-TEM) images were acquired on a 

Tecnai G2 F30 (Philips-FEI, Co. Ltd) instrument. The surface chemical state and 

composition of the active materials were investigated by X-ray Photoelectron 

Spectroscopy (XPS) (Kratos AXIS Ultra DLD) using Al Kα excitation.

Electrochemical measurements

All electrochemical measurements were performed on a CS 310H electrochemical 

workstation at 25 ± 1 °C in 1.0 M KOH solution. The measurement was carried out in 

a three-electrode compartment. NiFeSe@NF was used as the working electrode. An 

Ag/AgCl was served as the reference electrode and a Pt foil with exposed area of 4.0 

cm2 was used as the counter electrode. Potentials vs. RHE are calculated using the 

Nernst equation, ERHE = EAg/AgCl + 0.059 × pH + 0.197 V. Linear sweep voltammetry 

(LSV) measurements were carried out with scan rate of 1.0 mV s-1. The polarization 

curves were IR-corrected as following: E = Eapply - iR. Cyclic voltammetry (CV) tests 

were conducted to probe the electrochemical double layer capacitance of samples at 

non-faradaic potential region. In detail, a series of CV measurements were performed 

from 0.1 to 0.15 V and -0.3 to 0.35 V vs. Ag/AgCl towards OER and HER, respectively, 

at various scan rates from 20 to 100 mV s-1. By plotting the difference of current density 

(ΔJ) between the anodic and cathodic sweeps (Janodic - Jcathodic) against the scan rate, a 
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linear trend was observed. The slope of the fitting line is equal to twice the geometric 

double layer capacitance (Cdl), which is proportional to the effective electrode surface 

area of the materials. Electrochemical impedance spectroscopy (EIS) measurements 

were carried out at 1.5 V and -1.2 V vs. Ag/AgCl towards OER and HER, respectively, 

over the frequency range from 100 kHz to 10 mHz with the AC amplitude of 5 mV. 

Chronopotentiometric measurements were tested at 10 mA cm-2 for 10 h towards OER 

and HER.
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Fig. S1 SEM image, EDS spectra and corresponding elemental mapping images of 

NiFe10Se10@NF. 
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Fig. S2 SEM images of NiFe10@NF (a), NiSe10@NF (b), NiFe5Se10@NF (c), 

NiFe10Se5@NF (d), NiFe10Se10@NF (e) and NiFe10Se15@NF (f).
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Fig. S3 High-resolution XPS spectra of O 1s of NiFe10Se10@NF.
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Fig. S4 LSV curves towards OER of NiFe10Se10@NF (1), NiFe5Se10@NF (2), 

NiFe10Se5@NF (3) and NiFe10Se15@NF (4).
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Fig. S5 CV curves (OER) in the double layer region with various scan rates from 20 to 

100 mV s-1 for NiFe10Se10@NF (a), NiSe10@NF (b), NiFe10@NF (c) and NF (d) and 

the corresponding linear fitting of the capacitive density versus scan rates (e).
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Fig. S6 The LSV curves in Fig. 6a normalized to the ECSA. 
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Fig. S7 Nyquist plots of the NiFe10Se10@NF before (1) and after (2) OER 

chronopotentiometric test for 10h.



12

Fig. S8 SEM image and corresponding elemental mapping images of NiFe10Se10@NF 

after OER chronopotentiometric test for 10 h.
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Fig. S9 Survey XPS spectra (a) and high-resolution XPS spectra of Ni 2p (b), Fe 2p (c), 

Se 3d (d), and O 1s (e) of NiFe10Se10@NF after OER stability test for 10 h.

1200 1000 800 600 400 200 0

Fe
 2

p

Se
 3

pIn
te

ns
ity

 / 
a.

u.

Binding energy / eV

a)

O
 K

LL

Ni
 2

p

O
 1

s

C 
1s

Se
 3

d

Element At. / %
Ni 28.48
Fe 5.64
Se 1.05
O 64.83

890 880 870 860 850

Ni 2p 3/2

Sat.

In
te

ns
ity

 / 
a.

u.

Binding energy / eV

Sat.
Ni 2p 1/2

b)

534 532 530 528 526

O4

O3

O2

O1In
te

ns
ity

 / 
a.

u.

Binding energy / eV

e)

60

SeOx

Se 3d 3/2

In
te

ns
ity

 / 
a.

u.

Binding energy / eV

Se 3d 1/2

d)

736 728 720 712 704

Fe 2p 3/2

In
te

ns
ity

 / 
a.

u.

Binding energy / eV

Fe 2p 1/2

c)



14

Fig. S10 Low (a, b) and high (c) resolution TEM images, SAED pattern (d), HAADF 

image and corresponding STEM-EDS elemental mapping (Ni, Se, and O) (e) of the 

NiFe10Se10@NF after OER stability test. 
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Fig. S11 LSV curves towards HER of NiFe10Se10@NF(1), NiFe5Se10@NF(2), 

NiFe10Se5@NF(3) and NiFe10Se15@NF(4).
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Fig. S12 CV curves (HER) in the double layer region with various scan rates from 20 

to 100 mV s-1 forNiFe10Se10@NF(a), NiSe10@NF(b), NiFe10@NF(c) and NF(d) and the 

corresponding linear fitting of the capacitive density versus scan rates(d).
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Fig. S13 The LSV curves in Fig. 7a normalized to the ECSA. 
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Fig. S14 Nyquist plots of the NiFe10Se10@NF before (1) and after (2) HER 

chronopotentiometric test for 10h.
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Fig. S15 The SEM image and corresponding elemental mapping images of 

NiFe10Se10@NF after HER chronopotentiometric test.
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Fig. S16 Survey XPS spectra (a) and high-resolution XPS spectra of Ni 2p (b), Fe 2p 

(c), Se 3d (d) and O 1s (e) of NiFe10Se10@NF after HER stability test.
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Fig. S17 Low (a, b) and high (c) resolution TEM images, SAED pattern (d), HAADF 

image and corresponding STEM-EDS elemental mapping (Ni, Se, and O) (e) of the 

NiFe10Se10@NF after HER stability test.
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Fig. S18 LSV curves of water electrolysis for NiFe10Se10@NF || NiFe10Se10@NF (1), 

NiFe5Se10@NF || NiFe5Se10@NF (2), NiFe10Se5@NF || NiFe10Se5@NF (3) and NiFe10Se15@NF || 

NiFe10Se15@NF (4) in a two-electrode configuration. 
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Fig. S19 The SEM image and corresponding elemental mapping images of NiFe10Se10@NF (anode) 

after overall water stability test.
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Fig. S20 The SEM image and corresponding elemental mapping images of NiFe10Se10@NF 

(cathode) after overall water stability test.
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Table S1 Comparison of alkaline OER performance for NiFe10Se10@NF with other 

nickel-based selenide Catalyst Electrocatalysts.

Note: DO: the selenide-derived oxide. 

a: The data were chosen from the hydrothermal temperature for 180℃. 

Nickel-based selenide Catalyst Tafel slope / 

mV dec-1

Overpotential / 

mV (j = 10 mA cm-2)

Ref.

NiFe10Se10@NF 40 199 This work

Se-(NiCo)S/OH 33.9 155 [1]

NiSe–PANI 145.4 180 [2]

NiCoSe2/NF 97 183 [3]

NixFe1–xSe2-DO 28 195 [4]

(Ni,Co)Se2/NiFe-LDH 61 205 [5]

NiCoSe2-x/N-doped C 75 215 [6]

Ni-Fe-Se1:1-180 36 216 [7] a

(Ni,Fe)3Se4 41 225 [8]

(Ni0.77Fe0.23)Se2/CC 69 228 [9]

Ni0.5Fe0.5Se2 34.7 235 [10]

(Ni0.75Fe0.25)Se2 47.2 255 [11]

(Ni,Co)Se2 74 256 [12]

Ni0.7Co0.3Se2 42.3 258 [13]

Fe–NiSe/NF 48 261 [14]

NiCoSe2/NF 61.2 274 [15]

(Co,Ni)Se2@NiFe LDH 75 277 [16]
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Table S2 Comparison of alkaline HER performance for NiFe10Se10@NF with other 

nickel-based selenide Catalyst Electrocatalysts.

Nickel-based selenide Catalyst Tafel slope / 

mV dec-1

Overpotential / 

mV (j = 10 mA cm-2)

Ref.

NiFe10Se10@NF 129.3 154 This work

NiFe10Se10@NF- after stablility test 86 This work

NiSe/Ni3Se2/NF-12 101.2 92 [17]

Se-(NiCo)Sx/(OH)x 87.3 103 [1]

Ni0.75Fe0.25Se2 86.5 117 [18]

NiSe/NF 76 160 [19]

NiFe-Se/C 94 160 [20]

Ni0.54W0.26Se 74 162 [21]

(Ni,Co)0.85Se 115.66 169 [22]

NiSe/NF(ethonal) 103 170.5 [23]

Co/(NiCo)Se2 39.8 190 [24]

NiSe2 72.11 198 [25]

Ni0.75Se 86 233 [26]

Y-S Ni-Co-Se/CFP 72 250 [27]

NiSe2 35 269 [28]
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Table S3 Comparison of alkaline overall water splitting performance for 

NiFe10Se10@NF with other nickel-based selenide Catalyst.

Note: GA: graphene aerogel; HRD: hollow rhombic dodecahedra.

Nickel-based selenide Catalyst Cell Votage / 

V (j = 10 mA cm-2)

Ref.

NiFe10Se10@NF 1.61 This work

(Ni,Co)Se2/C-HRD 1.58 [29]

(Ni,Co)Se2-GA 1.6 [30]

Se-(NiCo)Sx/(OH)x 1.6 [1]

NiSe/Ni3Se2/NF-12 1.6 [17]

Ni0.75Fe0.25Se2 1.61 [18]

NiSe-Ni0.85Se/CP 1.62 [31]

(Ni,Co)0.85Se 1.65 [22]

Co0.85Se/NiFe-LDH 1.67 [19]

NiFe-Se/C 1.68 [20]

Ni0.5Se||Ni0.75Se 1.73 [26]
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