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Experimental section

Synthesis of FeCoCuOx

FeCoCuOx oxide was prepared by a modified sol-gel method.[1] Typically, 0.162 

g (1.0 mmol) of ferric trichloride, 0.13 g (1.0 mmol) of cobalt chloride and 0.134 g 

(1.0 mmol) of cupric chloride were dissolved in 2 mL ethanol, which were denoted as 

solution A. 0.1 mL of deionized water was dissolved in 2 mL of ethanol, which were 

nominated as solution B. After the solution A and solution B were cooled down to 

zero degree, the solution B was added to solution A to form a pellucid solution. Then, 

1 mL of precooled propylene oxide was dropwise added to the above mixture under 

vigorous stirring. The obtained gel was aged for 24 h and then extracted with acetone 

for five times. The solid was dried by freeze drying method to obtain sandybrown 

FeCoCuOx.

For comparison, FeOx, CoOx, CuOx, FeCuOx, FeCoOx, and CoCuOx were 

synthesized following a process similar to that for FeCoCuOx.

Characterization

Transmission electron microscope (TEM) images were observed by a HITACHI 

HT7700. High-resolution TEM (HRTEM) images were recorded on a JEM-2100 

transmission electron microscope (Tokyo, Japan) at 200 kV. SEM images were 

recorded on a HITACHI SU8020 field emission scanning electron microscope. The 

valence state was determined using XPS recorded on a Thermo ESCALAB 250Xi. 

The X-ray source selected was monochromatized Al Kα source (15 kV, 10.8 mA). 
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Region scans were collected using a 20 eV pass energy. Peak positions were 

calibrated relative to C 1s peak position at 284.6 eV. Inductively coupled plasma 

atomic emission spectrometer (ICP-AES) was performed on a Shimadzu ICPS-8100.

Electrochemical measurements

All electrochemical measurements were performed on an electrochemical 

working station at room temperature. The catalysts were measured in 1.0 M 

KOH aqueous solution using a typical three-electrode configuration, in which 

glassy carbon electrode (platinum electrode or nickel foam) was used as the 

working electrode; platinum plate and saturated calomel electrode (SCE, 

saturated KCl) were used as the counter and reference electrodes, respectively. 

All potentials reported here in this work were calibrated against the reversible 

hydrogen electrode (RHE) (Figure S2). The working electrode was first 

activated by steady-state cyclic voltammetry (CV) performed in the potential 

range from 1.0 to 1.5 V vs RHE at a scan rate of 50 mV s−1 for 50 cycles. 

Linear sweep voltammetry (LSV) polarization curves were acquired at a scan 

rate of 1 mV·s−1. Electrochemical impedance spectroscopy (EIS) measurements 

were performed at open-circuit potential in the frequency range from 100 kHz 

to 0.1 Hz with an a.c. perturbation of 5 mV.

One millilitre of homogeneous catalyst ink was obtained by sonication for 

30 min, consisting of 4 mg of catalyst, 20 μL of Nafion solution (5%), and 980 
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μL of water. All the catalyst ink was dropped on the pre-polished glassy carbon 

electrode (~0.4 mg·cm−2).

Calibration of SCE and conversion to RHE

The reference electrode SCE was calibrated according to the method reported 

previously.[2-4] Calibrations were carried out by using a reversible hydrogen 

electrode (RHE). First, two Pt electrodes were cleaned by cycling in 1 M H2SO4 

between -2 and 2 V for 2 hours. Then, they were used as working electrode and 

counter electrode, respectively. Before the calibration, the 1.0 M KOH electrolyte 

should be saturated with H2 by continuous bubbling H2. During the calibration, 

hydrogen was bubbled over the working electrode. A series of controlled-potential 

chronoamperometric curves were measured for 300 s to get the current interconvert 

between the hydrogen oxidation and hydrogen evolution reaction. The resulting 

potential is the potential of zero net current. In this work, the potential of zero net 

current was found at -1.038 V versus the SCE electrode in 1.0 M KOH (Figure S2). 

Thus, the potentials, measured against SCE, were converted into the potentials versus 

RHE by using the equation 1:

Evs.RHE = Evs.SCE +1.038 V (1)
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Figure S1. XPS survey spectrum of FeCoCuOx.
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Figure S2. The current as a function of the applied potentials for the calibration of 

SCE reference electrode in 1.0 M KOH.
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Figure S3. Polarization curves of FeCoCuOx supported on GCE in 1.0 M KOH 

solution with and without iR-compensation.
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Figure S4. XRD patterns of A-FeCoCuOx and referred samples (Fe2O3, Co3O4, and 

CuO).
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Figure S5. Nyquist plots of the EIS test for the FeOx, CoOx, CuOx, FeCuOx, and 

CoCuOx.
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Figure S6. (a) CVs of FeCoCuOx measured in a non-Faradaic region (from 0 to 0.1 V 

vs. SCE) at scan rate of 10 mV s-1, 20 mV s-1, 40 mV s-1, 60 mV s-1, 80 mV s-1, and 

100 mV s-1. (b) Capacitive j vs scan rate for FeCoCuOx anode. The linear slope is 

equivalent to twice of the double-layer capacitance Cdl. (c) Capacitive j vs scan rate 

for CuOx, FeOx, CoOx, FeCuOx, CoCuOx, FeCoOx, and FeCoCuOx.
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Figure S7. N2 adsorption–desorption isotherms of FeCoCuOx.
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Figure S8. Polarization curves of FeCoCuOx supported on Pt electrode in 1.0 M KOH 

solution with and without iR-compensation.
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Figure S9. Polarization curves of FeCoCuOx supported on nickel foam electrode in 

1.0 M KOH solution with and without iR-compensation.
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Figure S10. XRD patterns of FTO and FeCoCuOx/FTO after OER stability test.
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Figure S11. Representative TEM image of FeCoCuOx after OER.
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Table S1. Comparison of the OER performance of different transition-metal 

electrocatalysts on glass carbon electrodes in 1 M KOH

Catalyst η@ 10 mA·cm−2 (mV) Tafel slope 

(mV·dec−1)

Ref.

FeCoCuOx 256 42.9 This 

Work

IrO2 260 45 [5]

Co-Fe-O/rGO 340 31 [6]

CoFe LDH 331 52 [7]

FeCo-ONS 308 36.8 [8]

α-FeCoOx 300 33 [9]

NiFeOOH 340 60 [10]

NiFe LDH 300 40 [11]

Ni0.75Fe0.25OOH 258 - [12]

NiCo2.7(OH)x 350 65 [13]

CCS Ni-Co 302 43.6 [14]

Ni-Co LDHs 350 93 [15]

NiCo LDH 367 40 [16]

Mn3O4/CoSe2 450 49 [17]

CoMn LDH 324 43 [18]

NiFeAl ~350 158 [19]

NiCd(A)Fe 290 38 [20]
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G-FeCoW 223 37 [5]
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