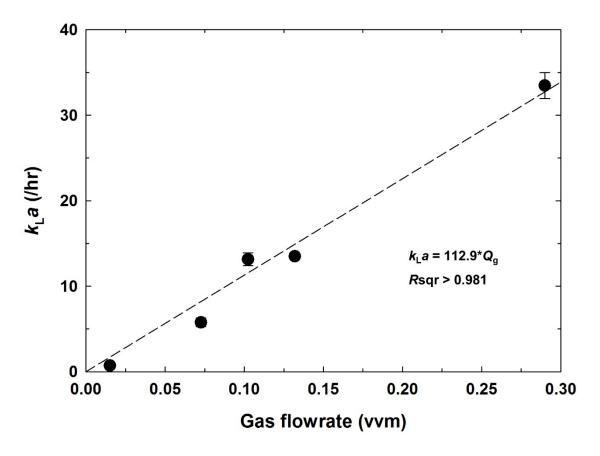
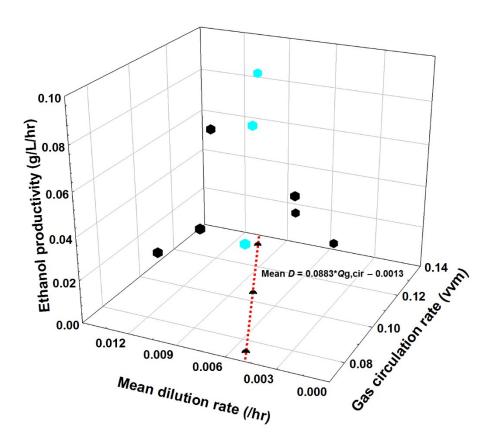
Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020


Supplementary information

The following is included as additional **Supplementary information** for this paper


Figure Legends

- **Fig. S1.** Variation of CO-water $k_L a$ in a 1x composition medium. The experimental setup is the same as the biotic test condition and only gas flowrate was controlled. All data point was obtained in triplicate.
- **Fig. S2.** Change in the ethanol productivity against mean dilution rate and gas circulation rate. The experimental conditions to obtain the maximized ethanol productivity were determined by the linear fitting line.
- **Fig. S3.** Extrapolation of the volumetric ethanol productivity versus the experimental internal gas circulation rate. Eqn. 9 was used to fit the data. a and b were estimated to be 3.78 and 0.49, respectively.

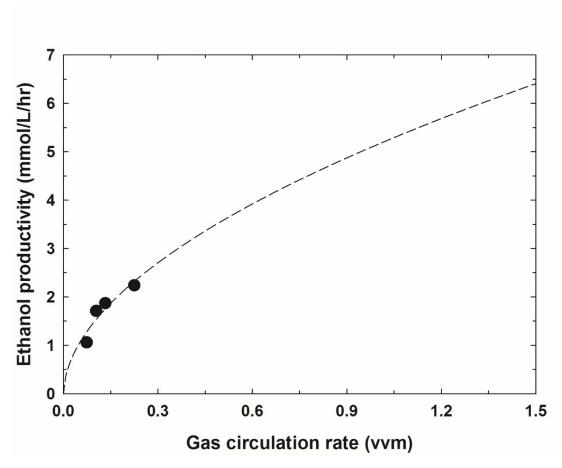

1

Figure S1. Variation of CO-water $k_L a$ in a 1x composition medium. The experimental setup is the same as the biotic test condition and only gas flowrate was controlled. All data point was obtained in triplicate.

Figure S2. Change in the ethanol productivity against mean dilution rate and gas circulation rate. The experimental conditions to obtain the maximized ethanol productivity were determined by the linear fitting line.

Figure S3. Extrapolation of the volumetric ethanol productivity versus the experimental internal gas circulation rate. Eqn. (4) was used to fit the data. a and b were estimated to be 3.78 and 0.49, respectively.

Table Legends

Table. S1. Price of chemical compounds according to medium composition. Prices of chemicals were mainly taken from the prices of the bulk products of Duksan chemicals (Korea), Samchun chemicals (Korea), Daejungchem (Korea), KANTO chemicals (Japan), Wako chemicals (Japan) and Sigma-Aldrich.

Table S1. Price of chemical compounds according to medium composition. Prices of chemicals were mainly taken from the prices of the bulk products of Duksan chemicals (Korea), Samchun chemicals (Korea), Daejungchem (Korea), KANTO chemicals (Japan), Wako chemicals (Japan) and Sigma-Aldrich.

	Price (\$/L)		
Chemicals	1x	10x	20x
General			
Yeast extract	0.0120000	0.0120000	0.0120000
NaCl*	0.0015748	0.0157480	0.0314961
MgSO ₄ *	0.0004147	0.0041471	0.0082942
CaCl ₂ *	0.0010105	0.0101050	0.0202100
NH ₄ Cl*	0.0041032	0.0410324	0.0820647
K ₂ HPO ₄	0.0091433	0.0091433	0.0091433
Resazurin	0.0000098	0.0000098	0.0000098
L-Cysteine-HCl	0.1058618	0.1058618	0.1058618
Trace minerals			
Nitrilotriacetic acid*	0.0018750	0.0187500	0.0375000
$FeSO_4.7H_2O^*$	0.0000026	0.0000262	0.0000525
$MnCl_2 \cdot 4H_2O^*$	0.0000066	0.0000656	0.0001312
$CoCl_2.6H_2O^*$	0.0001339	0.0013386	0.0026772
ZnCl ₂ *	0.0000066	0.0000656	0.0001312
$CaCl_2.6H_2O^*$	0.0000355	0.0003552	0.0007104
CuCl ₂ .2H ₂ O*	0.0000057	0.0000570	0.0001141
$H_3BO_3^*$	0.0000003	0.0000031	0.0000061
$Na_2MoO_4^*$	0.0000606	0.0006060	0.0012120
Na ₂ SeO ₄ *	0.0000231	0.0002310	0.0004619
$NiSO_4 \cdot 6H_2O^*$	0.0000028	0.0000279	0.0000558
NaCl*	0.0000175	0.0001750	0.0003500
$MnSO_4.H_2O^*$	0.0000962	0.0009624	0.0019248
$Fe(NH_4)_2(SO_4)_2.6H_2O^*$	0.0001141	0.0011409	0.0022817
$ZnSO_4.7H_2O^*$	0.0000086	0.0000857	0.0001715
$NiCl_2.6H_2O^*$	0.0000057	0.0000570	0.0001141
$Na_2WO_4^*$	0.0003180	0.0031800	0.0063600
Vitamin solution			
Biotin	0.0003264	0.0003264	0.0003264
Folic acid	0.0000173	0.0000173	0.0000173
Pyridoxine HCl	0.0000008	0.0000008	0.0000008
Thiamine HCl	0.0000768	0.0000768	0.0000768
Riboflavin	0.0000060	0.0000060	0.0000060
Nicotinic acid	0.0000013	0.0000013	0.0000013
Pantothenic acid	0.0005432	0.0005432	0.0005432
Cyanocobalamin	0.0004411	0.0004411	0.0004411
p-aminobenzoic acid	0.0000012	0.0000012	0.0000012
Lipoic acid	0.0002165	0.0002165	0.0002165
Total cost (\$)	0.1384615	0.2268053	0.3249650

^{*}Concentration reinforced