Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019

Supporting information for:

Modifying Perovskite Solar Cells with L(+)cysteine at the Interfaces between Mesoporous TiO₂ and Perovskite

Pengfei Wu, Baohua Zhao, Xiaotong Ma, Chengben Liu, Yanli Chen, Guangwu Yang*, Xiyou Li*

School of Materials Science and Engineering, Institute of New Energy, College of

Science, China University of Petroleum (East China), Qingdao, 266580, China

Experimental section

Materials

All chemicals and reagents were used as received without any further purification. Substrates are fluorine-doped tin oxide (FTO) conducting glass, which were washed sequentially in an ultrasonic bath with KOH/isopropyl alcohol-saturated solution, distilled water, acetone, and ethanol alcohol.

Measurements

Absorption spectra were recorded on a U-3900 UV-vis spectrophotometer (Japan Hitachi). Steady-state and time-resolved photoluminescence (PL) spectra were taken using a fluorescence spectrometer (FLS980, Edinburgh, England). IR spectra were recorded by using a Spectrum One instrument (German Perkinelmer). Laboratory powder X-ray diffraction patterns were collected on a Rigaku Ultima IV X-ray diffractometer with a Cu Ka source (40 kV, 40 mA). The morphology of the samples were observed on a field-emission scanning electron microscope (SEM, Quant 250FEG) equipped with an energy-dispersive X-ray (EDX) detector. The contact angle was measured on an OCA20 contact angle measuring instrument (Dataphysics, Germany). Current-voltage (I-V) data of PSCs and electrochemical impedance spectroscopy (EIS) were collected on an electrochemical workstation (CHI-760) in solar plot mode under xenon lamp irradiation. The xenon lamp used in the measurement was calibrated by a commercial standard Si cell (Newport). The external quantum efficiencies (EQEs) were detected by the dual phase lock-in amplifier (SR830) and the grating spectrometer (Omni-λ300).

Solar cell fabrication

Fluorine-doped tin oxide (FTO) glass substrates with dimension of 1.75 cm \times 1.2 cm were patterned by etching with zinc powder and 2M hydrochloric acid. The precursor solution of the block TiO₂ layer (bl-TiO₂) composed of 1-butanol and titanium diisopropoxide bis(acetylacetonate). The bl-TiO₂ was applied to FTO by spin-

coating at 3000 rpm for 20 s and sintered at 500 °C for 30 min. The mp-TiO₂ (18NR-T TiO2 paste, purity >99%) was then coated at 4000 rpm for 30 s and annealed at 500 °C for 30 min. For the perovskite layer, a precursor solution composed of CH₃NH₃I, PbI₂ and PbCl₂ in a molar ratio of 4:1:1 with N,N-dimethylformamide as solvent was spin-coated at 4000 rpm for 30 s and then annealed at 100 °C for 60 min. Spiro-OMeTAD as hole transport layer, was subsequently deposited following the literature method.³⁷ Finally, 80 nm thick Au as a counter electrode was deposited. The active area of fabricated PSCs is 0.06 cm²

L-cy modification onto mp-TiO₂ surface

The as-obtained FTO/bl-TiO₂/ mp-TiO₂ substrate was dipped into different L-cy solutions (solvent: methyl alcohol, ethyl alcohol, isopropanol and water) with a series L-cy concentration (0.5 mM, 1 mM and 1.5 mM) at room temperature for a certain time (0.5h, 1h, 1.5h, 2h), and then the substrates were washed thoroughly by absolute ethanol three times to remove physically absorbed L-cy molecules. Finally they were dried at 353 K in a vacuum oven for 90 min.

The Young's equation

When dropping liquid on a solid substrate, there will be a certain angel at the line of three-phase contact described by one of the mostly used physical equations, namely Young's equation(1)

$$\cos\theta\gamma_{\iota\nu} = \gamma_{s\nu} - \gamma_{s\iota} \tag{1}$$

where $\gamma_{\iota\nu}$ is liquid surface energy, $\gamma_{s\nu}$ is solid surface energy and $\gamma_{s\iota}$ is solid-liquid surface energy. According to the equation, it is clear understood that when $\gamma_{\iota\nu}$ is the same as $\gamma_{s\iota}$, the solid energy will go up with the contact angels decreasing. The contact angels between different thiadiazole derivatives containing perovskite films and DMF were investigated.

Table 1S The contact angle and solid interface energy for droplets of DMF on bare andL-cy modified mp-TiO2 substrate

	bare mp-TiO ₂	L-cy modified mp-TiO ₂
The contact angel	17°	7.9°
The solid interface energy	35.73 mN/m	37.04 mN/m

Table 2S Fitting parameters used in the equivalent circuit modeling of impedance spectra of the devices based on bare mp-TiO₂ and L-cy modified mp-TiO₂

	Device based on bare mp- TiO ₂	Device based on L-cy modified mp-TiO ₂
R_s (Ω)	19.68	19.44
R_{ct} (Ω)	129.8	116.0

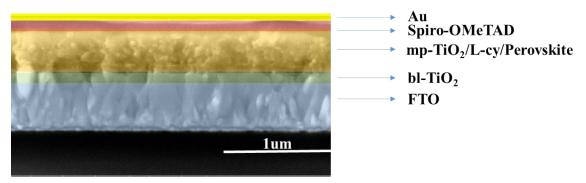


Fig. 1S The cross-section SEM image of the device with L-cy modified $mp-TiO_2$ containing the FTO cathode and Au anode.

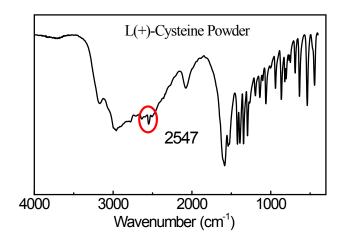


Fig. 2S The FTIR spectra of the L-cy powder.

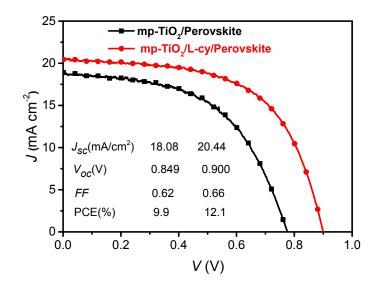


Fig. 3S *J-V* curves for the champion devices (1 cm^2) based on bare mp-TiO₂ and on modified mp-TiO₂.

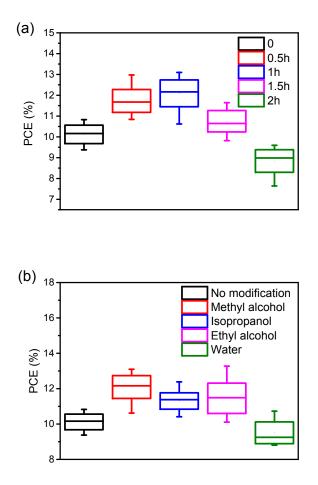
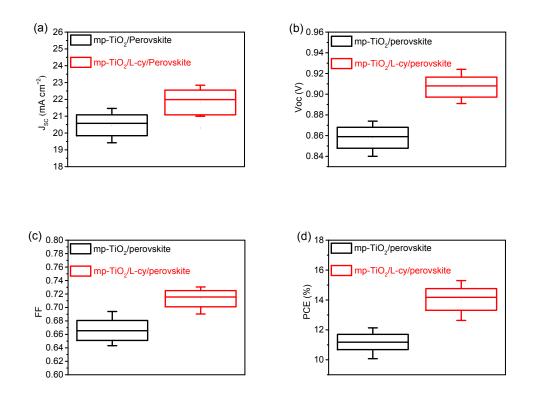



Fig. 4S Histograms of PCE for the devices based on L-cy modified mp-TiO₂: (a) with

different dipping time; (b) in different solvents.

Fig. 5S Histograms of (a) J_{SC} ; (b) V_{OC} ; (c) FF; (d) PCE for the devices based on bare mp-TiO₂ and on L-cy modified mp-TiO₂.

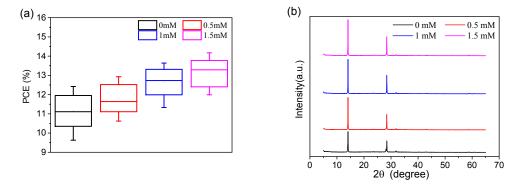


Fig. 6S (a) Histograms of PCE for the devices and; (b) XRD patterns of perovskite film based on bare mp-TiO₂ and on TiO₂ modified with different concentration methanol solutions.

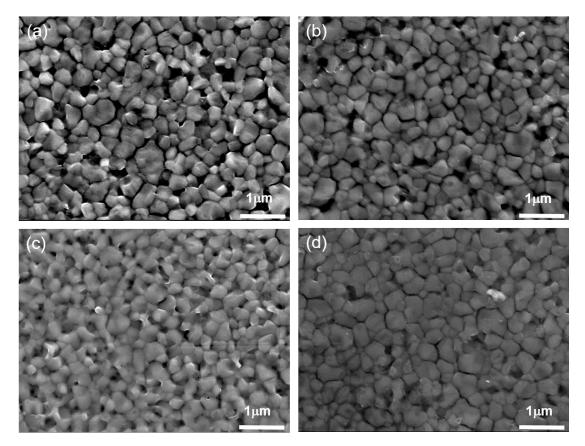


Fig. 7S Perovskite films on TiO_2 modified with different concentration methanol solution: (a) 0 mM; (b) 0.5 mM; (c) 1 mM; (d) 1.5 mM.

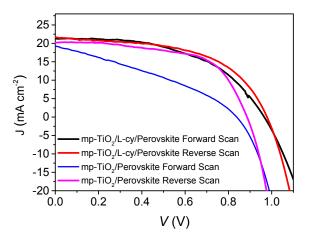


Fig. 8S Forward and reverse J-V curves for the champion devices based on bare mp-TiO₂ and on L-cy modified mp-TiO₂.