Supplementary Information

Double Layer Mesoscopic Electron Contact for Efficient Perovskite Solar Cells

Rohit D. Chavan,^a Pankaj Yadav,^b Mohammad Mahdi Tavakoli,^{c,d} Daniel Prochowicz,^e Ajaysing Nimbalkar,^a Sangram P. Bhoite,^a Popatrao N. Bhosale^f and Chang Kook Hong^{a,*}

^a Polymer Energy Materials Laboratory, School of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, South Korea.

^b Department of Solar Energy, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar-382 007, Gujarat, India.

^c Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^d Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran

^e Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

^f Materials Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, India.

*Corresponding author

Email: hongck@chonnam.ac.kr (Prof. Chang Kook Hong)

Fig. S1 Cross section SEM images of (a) c-TiO₂/mp-TiO₂, (b) zoom c-TiO₂/mp-TiO₂, (c) c-TiO₂/ZnS and (d) mp-TiO₂/ZnS based PSCs.

Fig. S2 Statistic histograms of PCE, J_{sc} , V_{oc} and FF from the collected 20 devices extracted from J-V curves of c-TiO₂/mp-TiO₂, c-TiO₂/ZnS/mp-TiO₂ and c-TiO₂/ZnS/mp-TiO₂ based PSCs.

Fig. S3 Steady-state PCE and photocurrent stabilities for (a) c-TiO₂/mp-TiO₂, (b) c-TiO₂/ZnS/mp-TiO₂ and (c) c-TiO₂/mp-TiO₂/ZnS based devices.

Fig. S4 J-V curves of champion device under both forward and backward scan directions (a) c-TiO₂/mp-TiO₂, (b) c-TiO₂/ZnS/mp-TiO₂ and (c) mp-TiO₂/ZnS based devices.

Fig. S5 Top view SEM images of bare (a) FTO/c-TiO₂/ZnS, (b) FTO/c-TiO₂/mp-TiO₂ and (c) FTO/c-TiO₂/mp-TiO₂/ZnS layers.

Fig. S6 Energy dispersive X-ray spectroscopy (EDS) elemental mapping and spectrum of Ti, O, Zn and S in $FTO/c-TiO_2/mp-TiO_2/ZnS$ films. The scale bar is 1 µm (mapping images are artificially colored for better observation).

Fig. S7 XPS spectra of (a) FTO/c-TiO₂/mp-TiO₂ and FTO/c-TiO₂/mp-TiO₂/ZnS films. (b) Ti 2p core level spectra of c-TiO₂/mp-TiO₂ and c-TiO₂/mp-TiO₂/ZnS films. (c) O 1s core level spectra of c-TiO₂/mp-TiO₂ and c-TiO₂/mp-TiO₂/ZnS films. (d) Zn 2p core level spectra of c-TiO₂/mp-TiO₂/ZnS film. (e) S 2p core level spectra of c-TiO₂/mp-TiO₂/ZnS film.

Fig. S8 (a) Transmission spectra of FTO/c-TiO₂/mp-TiO₂ and different ALD cycles of FTO/c-TiO₂/mp-TiO₂/ZnS ETLs films. (b) Tauc plot of $(\alpha hv)^2$ vs photon energy of c-TiO₂/mp-TiO₂ and different ALD cycles of c-TiO₂/mp-TiO₂/ZnS ETLs films. (c) Tauc plot of $(\alpha hv)^2$ vs photon energy of c-TiO₂/ZnS.

Table S1. Photovoltaic properties of the champion PSCs based on $c-TiO_2/mp-TiO_2$, $c-TiO_2/ZnS/mp-TiO_2$ and $c-TiO_2/mp-TiO_2/ZnS$ under AM 1.5G illumination with different ALD cycles of ZnS buffer layer.

ETLs	V _{OC} (V)	J _{SC} (mAcm ⁻²)	FF (%)	PCE (%)
c-TiO ₂ /mp-TiO ₂	1.095	22.48	73.10	17.90
c-TiO ₂ /0.6 nm ZnS/mp-TiO ₂	1.110	22.55	74.84	18.40
c-TiO ₂ /1.2 nm ZnS/mp-TiO ₂	1.115	22.68	75.30	18.63
c-TiO ₂ /1.8 nm ZnS/mp-TiO ₂	1.124	22.76	75.80	18.85
c-TiO ₂ /2.4 nm ZnS/mp-TiO ₂	1.100	22.49	72.20	18.12

ETLs	Voc (V)	J_{SC} (mAcm ⁻²)	FF (%)	PCE (%)
c-TiO ₂ /mp-TiO ₂ /0.6 nm ZnS	1.115	22.60	74.90	18.53
c-TiO ₂ /mp-TiO ₂ /1.2 nm ZnS	1.118	22.72	75.85	18.90
c-TiO ₂ /mp-TiO ₂ /1.8 nm ZnS	1.137	22.80	76.13	19.10
c-TiO ₂ /mp-TiO ₂ /2.4 nm ZnS	1.120	22.50	75.08	18.15

ETLs	Scan direction	Voc (V)	J _{SC} (mAcm ⁻²)	FF (%)	PCE (%)	PCE _{avg} (%)	HI (%)
c-TiO ₂ /mp-TiO ₂	Forward	1.080	22.15	71.05	17.02	17.5	4.9
	Backward	1.095	22.48	73.10	17.90		
c-TiO2/ZnS	Forward	1.119	22.52	74.55	18.48	18.7	1.96
	Backward	1.124	22.76	75.80	18.85		
mp-TiO ₂ /ZnS	Forward	1.130	22.71	75.62	18.82	19.0	1.45
	Backward	1.137	22.80	76.13	19.10		

Table S2. Solar cell parameter from J-V curves recorded under forward and backward scan direction for c-TiO₂/mp-TiO₂, c-TiO₂/ZnS and mp-TiO₂/ZnS devices.

Name	Start BE	Peak BE	End BE	FWHM (eV)	Atomic %
C1s	291 38	284.6	280 78	4 65	11 38
Ols	537.21	529.63	524.65	2.45	58.68
Ti 2p _{3/2}	460.81	458.45	453 71	2.53	16.82
Ti 2p _{1/2}	466.78	464.01	460.65	2.9	13.11

Table S3. XPS elemental analysis of FTO/c-TiO₂/mp-TiO₂ ETL.

Table S4. XPS elemental analysis of FTO/c-TiO₂/mp-TiO₂/ZnS ETL.

Name	Start BE	Peak BE	End BE	FWHM	Atomic %
				(eV)	
C1s					
	290.86	284.6	280.95	3.1	19.31
O1s					
010	535.54	529.80	525.39	2.41	41.79
Ti 2n _{3/2}					
P5/2	461.01	459.17	455.4	2.12	12.92
Ti 2n _{1/2}					
F ^{1/2}	467.47	464.47	460.93	2.7	11.56
Zn 2n _{3/2}					
211 - P 5/2	1025.46	1021.84	1016.95	2.38	5.51
$Zn 2n_{1/2}$					
	1049.47	1044.89	1040.86	2.49	5.44
S 2n _{1/2}					
~ -P1/2	165.06	161.06	157.5	3.27	3.47

Table S5. Fitted results of TRPL curve of the perovskite film and perovskite film on c-TiO ₂ /mp	-
TiO ₂ ; c-TiO ₂ /ZnS/mp-TiO ₂ and c-TiO ₂ /mp-TiO ₂ /ZnS layers.	

ETL	A ₁	A ₂	τ ₁ (ns)	$ au_2$ (ns)	$<\tau>$ (ns)
glass/perovskite	0.83	0.17	7.1	46.5	29.4
glass/c-TiO2/mp-TiO2/perovskite	0.61	0.39	2.36	22.36	19.53
glass/c-TiO ₂ /ZnS/mp-TiO ₂ /perovskite	0.65	0.35	4.67	22.84	17.75
glass/c-TiO ₂ /mp-TiO ₂ /ZnS/perovskite	0.76	0.24	2.41	11.1	7.6

The observed TRPL decay profile data was fitted to a biexponential function of the form in equation (1).

$$I(t) = I_0 + A_1 \exp\left(-\frac{t - t_0}{\tau_1}\right) + A_2 \exp\left(-\frac{t - t_0}{\tau_2}\right) \qquad \dots (1)$$

where τ_1 and τ_2 are first and second order decay times and A₁ and A₂ are respective weight factors of each decay area. The average recombination life time is calculated as $\langle \tau_{avg} \rangle$ for the respective sample with the help of lifetime values and weight fraction amplitude values (%) using the following equation (2).^{1,2}

$$< au_{avg}> = \sum_n \frac{\sum A_n \tau_n^2}{\sum_m A_m \tau_m^2} \qquad \dots (2)$$

Table S6. Energy level detailed calculated parameters from UPS measurements for $c-TiO_2/mp-TiO_2$ and $c-TiO_2/mp-TiO_2/ZnS$ ETLs.

ETL	E _{cutoff} (ev)	E _{onset} (ev)	VBM (ev)	CBM (ev)	Eg (ev)
c-TiO ₂ /mp-TiO ₂	17.55	3.77	-7.44	-4.01	3.43
c-TiO ₂ /mp-TiO ₂ /ZnS	17.49	3.42	-7.15	-3.77	3.38
perovskite*	-	-	-5.65	-3.92	1.6
PTAA*	-	-	-5.1	-1.8	-

* as per standard reference

The Fermi level, VBM and CBM was calculated from the following equation

$h\nu - \phi = EFermi - Ecutoff$	(1)
$VBM = h\nu + (EFermi - Ecutoff)$	(2)
CBM = VBM + Eg	(3)

Where hv is the energy of the HeI emission line (21.22 eV) and ϕ is the work function of the sample, more detailed for calculations of VBM and CBM can be found Elsevier.^{3,4}

REFERENCES

- S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L.
 M. Herz, A. Petrozza and H. J. Snaith, *Science*, 2013, **342**, 341–344.
- J. You, Z. Hong, Y. (Michael) Yang, Q. Chen, M. Cai, T. Song, C. Chen, S. Lu, Y. Liu, H.
 Zhou and Y. Yang, ACS Nano, 2014, 8, 1674–1680.
- J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei and
 W. Lau, J. Mater. Chem. A, 2015, 3, 11750–11755.
- 4 X. Gao, Q. Ge, D. Xue, J. Ding, J. Ma, Y. Chen, B. Zhang, Y. Feng, L. Wan and J. Hu, *Nanoscale*, 2016, **8**, 16881–16885.